Convergence uniformeLa convergence uniforme d'une suite de fonctions est une forme de convergence plus exigeante que la convergence simple. La convergence devient uniforme quand toutes les suites avancent vers leur limite respective avec une sorte de « mouvement d'ensemble ». Dans le cas de fonctions numériques d'une variable, la notion prend une forme d'« évidence » géométrique : le graphe de la fonction f se « rapproche » de celui de la limite. Soient X un ensemble, (Y, d) un espace métrique, et A un sous-ensemble de X.
Convergence absolueEn mathématiques, une série numérique réelle ou complexe converge absolument si, par définition, la série des valeurs absolues (ou des modules) est convergente. Cette définition peut être étendue aux séries à valeurs dans un espace vectoriel normé et complet, soit un espace de Banach. Dans tous ces contextes, cette condition est suffisante pour assurer la convergence de la série elle-même. Par analogie, l'intégrale d'une fonction à valeurs réelles ou complexes converge absolument si, par définition, l'intégrale de la valeur absolue (ou du module) de la fonction est convergente (fonction dans L1).
Série (mathématiques)En mathématiques, la notion de série permet de généraliser la notion de somme finie. Étant donné une suite de terme général u, étudier la série de terme général u c'est étudier la suite obtenue en prenant la somme des premiers termes de la suite (u), autrement dit la suite de terme général S défini par : L'étude d'une série peut passer par la recherche d'une écriture simplifiée des sommes finies en jeu et par la recherche éventuelle d'une limite finie quand n tend vers l'infini.
Série entièreEn mathématiques et particulièrement en analyse, une série entière est une série de fonctions de la forme où les coefficients a forment une suite réelle ou complexe. Une explication de ce terme est qu'. Les séries entières possèdent des propriétés de convergence remarquables, qui s'expriment pour la plupart à l'aide de son rayon de convergence R, grandeur associée à la série. Sur le disque de convergence (disque ouvert de centre 0 et de rayon R), la fonction somme de la série peut être dérivée indéfiniment terme à terme.