Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit des techniques de clustering d'apprentissage automatique non supervisées telles que K-means, Gaussian Mixture Models et DBSCAN, expliquant leurs algorithmes et leurs applications.
Explore la vérification du modèle et les résidus dans lanalyse de régression, en soulignant limportance des diagnostics pour assurer la validité du modèle.
Explore les régressions paramétriques, en mettant l'accent sur la simplicité et la complexité des compromis de régression linéaire entre les modèles paramétriques et non paramétriques.
Couvre les techniques de simulation stochastique et de réduction de la variance, en se concentrant sur la génération de distributions variables et auxiliaires de Courra.