Classe (mathématiques)En mathématiques, la notion de classe généralise celle d'ensemble. Les deux termes sont parfois employés comme synonymes, mais la théorie des ensembles distingue ces deux notions. Un ensemble peut être vu comme une collection d'objets, mais aussi comme un objet mathématique, qui en particulier peut lui-même appartenir à un autre ensemble. Ce n'est pas forcément le cas d'une classe, qui est une collection d'objets que l'on peut définir, dont on peut donc parler, mais qui ne forme pas nécessairement un ensemble.
Ordinal arithmeticIn the mathematical field of set theory, ordinal arithmetic describes the three usual operations on ordinal numbers: addition, multiplication, and exponentiation. Each can be defined in essentially two different ways: either by constructing an explicit well-ordered set that represents the result of the operation or by using transfinite recursion. Cantor normal form provides a standardized way of writing ordinals. In addition to these usual ordinal operations, there are also the "natural" arithmetic of ordinals and the nimber operations.
Ordre totalEn mathématiques, on appelle relation d'ordre total sur un ensemble E toute relation d'ordre ≤ pour laquelle deux éléments de E sont toujours comparables, c'est-à-dire que On dit alors que E est totalement ordonné par ≤. Une relation binaire ≤ sur un ensemble E est un ordre total si (pour tous éléments x, y et z de E) : x ≤ x (réflexivité) ; si x ≤ y et y ≤ x, alors x = y (antisymétrie) ; si x ≤ y et y ≤ z, alors x ≤ z (transitivité) ; x ≤ y ou y ≤ x (totalité). Les trois premières propriétés sont celles faisant de ≤ une relation d'ordre.
Théorie des ensemblesLa théorie des ensembles est une branche des mathématiques, créée par le mathématicien allemand Georg Cantor à la fin du . La théorie des ensembles se donne comme primitives les notions d'ensemble et d'appartenance, à partir desquelles elle reconstruit les objets usuels des mathématiques : fonctions, relations, entiers naturels, relatifs, rationnels, nombres réels, complexes... C'est pourquoi la théorie des ensembles est considérée comme une théorie fondamentale dont Hilbert a pu dire qu'elle était un « paradis » créé par Cantor pour les mathématiciens.
Cardinalité (mathématiques)En mathématiques, la cardinalité est une notion de taille pour les ensembles. Lorsqu'un ensemble est fini, c'est-à-dire si ses éléments peuvent être listés par une suite finie, son cardinal est la longueur de cette suite, autrement dit il s'agit du nombre d'éléments de l'ensemble. En particulier, le cardinal de l'ensemble vide est zéro. La généralisation de cette notion aux ensembles infinis est fondée sur la relation d'équipotence : deux ensembles sont dits équipotents s'il existe une bijection de l'un dans l'autre.
Axiomes de Peanovignette|Giuseppe Peano En mathématiques, les axiomes de Peano sont des axiomes pour l'arithmétique proposés initialement à la fin du par Giuseppe Peano, et qui connaissent aujourd'hui plusieurs présentations qui ne sont pas équivalentes, suivant la théorie sous-jacente, théorie des ensembles, logique du second ordre ou d'ordre supérieur, ou logique du premier ordre. Richard Dedekind avait proposé une formalisation assez proche, sous une forme non axiomatique.