Cumulative frequency analysis is the analysis of the frequency of occurrence of values of a phenomenon less than a reference value. The phenomenon may be time- or space-dependent. Cumulative frequency is also called frequency of non-exceedance. Cumulative frequency analysis is performed to obtain insight into how often a certain phenomenon (feature) is below a certain value. This may help in describing or explaining a situation in which the phenomenon is involved, or in planning interventions, for example in flood protection. This statistical technique can be used to see how likely an event like a flood is going to happen again in the future, based on how often it happened in the past. It can be adapted to bring in things like climate change causing wetter winters and drier summers. Frequency analysis is the analysis of how often, or how frequently, an observed phenomenon occurs in a certain range. Frequency analysis applies to a record of length N of observed data X1, X2, X3 . . . XN on a variable phenomenon X. The record may be time-dependent (e.g. rainfall measured in one spot) or space-dependent (e.g. crop yields in an area) or otherwise. The cumulative frequency MXr of a reference value Xr is the frequency by which the observed values X are less than or equal to Xr. The relative cumulative frequency Fc can be calculated from: where N is the number of data Briefly this expression can be noted as: When Xr = Xmin, where Xmin is the unique minimum value observed, it is found that Fc = 1/N, because M = 1. On the other hand, when Xr = Xmax, where Xmax is the unique maximum value observed, it is found that Fc = 1, because M = N. Hence, when Fc = 1 this signifies that Xr is a value whereby all data are less than or equal to Xr. In percentage the equation reads: The cumulative probability Pc of X to be smaller than or equal to Xr can be estimated in several ways on the basis of the cumulative frequency M. One way is to use the relative cumulative frequency Fc as an estimate.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (2)
ENV-221: Hydrology for engineers
This is an introductory course to key concepts and methods in physical and engineering hydrology.
Séances de cours associées (24)
Estimation des courbes DDF
Discute des relations intensité-durée-fréquence en hydrologie et étend la théorie aux événements de toute durée.
Ajuster les courbes de Gumbel aux données de pluie
Explore l'ajustement des courbes de Gumbel aux données de précipitations en hydrologie.
Turbulence : Simulation numérique de flux
Explore les caractéristiques de la turbulence, les méthodes de simulation et les défis de modélisation, fournissant des lignes directrices pour le choix et la validation des modèles de turbulence.
Afficher plus
Publications associées (34)
Concepts associés (16)
Loi d'extremum généralisée
En probabilité et statistique, la loi d'extrémum généralisée est une famille de lois de probabilité continues qui servent à représenter des phénomènes de valeurs extrêmes (minimum ou maximum). Elle comprend la loi de Gumbel, la loi de Fréchet et la loi de Weibull, respectivement lois d'extrémum de type I, II et III. Le théorème de Fisher-Tippett-Gnedenko établit que la loi d'extremum généralisée est la distribution limite du maximum (adéquatement normalisé) d'une série de variables aléatoires indépendantes de même distribution (iid).
Loi log-logistique
Dans la théorie des probabilités et en statistiques, la loi log-logistique (connue aussi comme la distribution de Fisk en économie) est une loi de probabilité continue pour une variable aléatoire strictement positive. Elle est utilisée dans l'étude de la durée de vie d'événement dont l'intensité augmente d'abord pour ensuite décroître, comme pour la mortalité dû au cancer après diagnostic ou traitement. Elle est aussi utilisée en hydrologie pour modéliser le débit d'un cours d'eau ou le niveau des précipitations, et en économie pour modéliser l'inégalité des revenus.
Loi de Gumbel
En théorie des probabilités, la loi de Gumbel (ou distribution de Gumbel), du nom d'Émil Julius Gumbel, est une loi de probabilité continue. La loi de Gumbel est un cas particulier de la loi d'extremum généralisée au même titre que la loi de Weibull ou la loi de Fréchet. La loi de Gumbel est une approximation satisfaisante de la loi du maximum d'un échantillon de variables aléatoires indépendantes toutes de même loi, dès que cette loi appartient, précisément, au domaine d'attraction de la loi de Gumbel.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.