Centre du triangleEn géométrie plane, la notion de centre du triangle est une notion qui généralise celle de centre d'un carré ou d'un cercle. Certains points remarquables du triangle, comme le centre de gravité, le centre du cercle circonscrit, le centre du cercle inscrit et l'orthocentre sont connus depuis la Grèce antique et constructibles simplement. Chacun de ces centres classiques a la propriété d'être invariant (plus précisément équivariant) par similitudes.
Orthocentric systemIn geometry, an orthocentric system is a set of four points on a plane, one of which is the orthocenter of the triangle formed by the other three. Equivalently, the lines passing through disjoint pairs among the points are perpendicular, and the four circles passing through any three of the four points have the same radius. If four points form an orthocentric system, then each of the four points is the orthocenter of the other three. These four possible triangles will all have the same nine-point circle.
Point de FermatEn géométrie euclidienne, le point de Fermat d'un triangle ABC donné est le point F du plan pour lequel la somme FA + FB + FC des distances aux trois sommets du triangle est minimale. Il porte ce nom en l'honneur du mathématicien français Pierre de Fermat qui l'évoque dans un de ses ouvrages. Il est également appelé point de Torricelli ou premier point isogonique, ou point de Steiner. L'existence du point F est assurée par le fait que la fonction définie sur le plan par est continue et tend vers l'infini en l'infini, et son unicité par le fait que cette fonction est strictement convexe.
Coordonnées trilinéairesEn géométrie, les coordonnées trilinéaires d'un point relativement à un triangle donné, notées (x : y : z) sont, à une constante multiplicative strictement positive près, les distances algébriques relativement aux côtés (étendus) du triangle. Pour un triangle ABC, le rapport x / y est le rapport des distances algébriques du point aux côtés (BC) et (AC) respectivement et ainsi de suite par permutation sur A, B, C.
Feuerbach pointIn the geometry of triangles, the incircle and nine-point circle of a triangle are internally tangent to each other at the Feuerbach point of the triangle. The Feuerbach point is a triangle center, meaning that its definition does not depend on the placement and scale of the triangle. It is listed as X(11) in Clark Kimberling's Encyclopedia of Triangle Centers, and is named after Karl Wilhelm Feuerbach. Feuerbach's theorem, published by Feuerbach in 1822, states more generally that the nine-point circle is tangent to the three excircles of the triangle as well as its incircle.
Cercle d'EulerEn géométrie, le cercle d'Euler d'un triangle (aussi appelé cercle des neuf points, cercle de Feuerbach, cercle de Terquem, cercle médian) est l'unique cercle passant par les neuf points remarquables suivants : Les trois milieux des trois côtés du triangle ; Le pied de chacune des trois hauteurs du triangle ; Le milieu de chacun des trois segments reliant l'orthocentre H à un sommet du triangle. Dans son mémoire E325 présenté en 1763, Euler a considéré séparément les deux cercles circonscrits aux triangles et sans noter leur coïncidence .
Droite d'Eulervignette|Droite d'Euler en rouge, médianes en orange, médiatrices en vert, et hauteurs en bleu. Le point rouge est le centre du cercle d'Euler. En géométrie euclidienne, dans un triangle non équilatéral, la droite d'Euler est une droite passant par plusieurs points remarquables du triangle, dont l'orthocentre, le centre de gravité (ou isobarycentre) et le centre du cercle circonscrit. Cette notion s'étend au quadrilatère et au tétraèdre.
Points cocycliquesEn géométrie, des points du plan sont dits cocycliques s'ils appartiennent à un même cercle. Trois points non alignés du plan sont cocycliques. En effet, tout triangle possède un cercle circonscrit. vignette La propriété précédente est un corollaire du théorème de l'angle inscrit. Si sont les affixes respectives de , la condition précédente s'écrit aussi D'où en utilisant le birapport, la condition équivalente : Le théorème de Ptolémée donne une condition nécessaire et suffisante de cocyclicité de quatre points par leurs distances.
Conjugué isogonalEn géométrie, le conjugué isogonal d'un point dans un triangle est le point où concourent les droites symétriques, par rapport aux bissectrices, des droites passant par chaque sommet et ce point. vignette Antiparallèle (mathématiques) Deux couples de droites (d, d) et (Δ, Δ') sont antiparallèles si les bissectrices des angles qu'ils forment ont même direction. Les angles de droites (d, Δ) et (Δ', d) sont égaux (modulo π). On dit que d''' est antiparallèle à d par rapport à (Δ, Δ').
Cercle circonscritEn géométrie, un cercle circonscrit à un polygone est un cercle qui passe par tous les sommets du polygone. Le polygone est alors dit inscrit dans le cercle : on parle de polygone inscriptible ou parfois de polygone cyclique. Les sommets sont alors cocycliques, c'est-à-dire situés sur un même cercle. Si le polygone n'est pas aplati, ce cercle est unique et son centre est le point de concours des médiatrices des côtés. Un polygone n'a pas nécessairement de cercle circonscrit, mais les triangles, les rectangles et les polygones réguliers sont tous inscriptibles.