Concepts associés (24)
Algorithme A*
En informatique, plus précisément en intelligence artificielle, l'algorithme de recherche A* (qui se prononce A étoile, ou A star en anglais) est un algorithme de recherche de chemin dans un graphe entre un nœud initial et un nœud final tous deux donnés. En raison de sa simplicité il est souvent présenté comme exemple typique d'algorithme de planification, domaine de l'intelligence artificielle.
Problème de plus court chemin
vignette|Exemple d'un plus court chemin du sommet A au sommet F : (A, C, E, D, F). En théorie des graphes, le 'problème de plus court chemin' est le problème algorithmique qui consiste à trouver un chemin d'un sommet à un autre de façon que la somme des poids des arcs de ce chemin soit minimale. Il existe de nombreuses variantes de ce problème suivant que le graphe est fini, orienté ou non, que chaque arc ou arête possède ou non une valeur qui peut être un poids ou une longueur.
Algorithme de Prim
thumb|right|Arbre couvrant de poids minimum L'algorithme de Prim est un algorithme glouton qui calcule un arbre couvrant minimal dans un graphe connexe pondéré et non orienté. En d'autres termes, cet algorithme trouve un sous-ensemble d'arêtes formant un arbre sur l'ensemble des sommets du graphe initial et tel que la somme des poids de ces arêtes soit minimale. Si le graphe n'est pas connexe, alors l'algorithme détermine un arbre couvrant minimal d'une composante connexe du graphe.
Algorithme glouton
Un algorithme glouton (greedy algorithm en anglais, parfois appelé aussi algorithme gourmand, ou goulu) est un algorithme qui suit le principe de réaliser, étape par étape, un choix optimum local, afin d'obtenir un résultat optimum global. Par exemple, dans le problème du rendu de monnaie (donner une somme avec le moins possible de pièces), l'algorithme consistant à répéter le choix de la pièce de plus grande valeur qui ne dépasse pas la somme restante est un algorithme glouton.
File de priorité
En informatique, une file de priorité est un type abstrait élémentaire sur laquelle on peut effectuer trois opérations : insérer un élément ; extraire l'élément ayant la plus grande clé ; tester si la file de priorité est vide ou pas. Ainsi, elle permet d'implémenter efficacement des planificateurs de tâches, où un accès rapide aux tâches d'importance maximale est souhaité. On la retrouve par exemple dans les ordonnanceurs des systèmes d'exploitation, notamment le noyau Linux.
Algorithme de recherche
En informatique, un algorithme de recherche est un type d'algorithme qui, pour un domaine, un problème de ce domaine et des critères donnés, retourne en résultat un ensemble de solutions répondant au problème. Supposons que l'ensemble de ses entrées soit divisible en sous-ensemble, par rapport à un critère donné, qui peut être, par exemple, une relation d'ordre. De façon générale, un tel algorithme vérifie un certain nombre de ces entrées et retourne en sortie une ou plusieurs des entrées visées.
Algorithme de Kruskal
En informatique, l'algorithme de Kruskal est un algorithme de recherche d'arbre recouvrant de poids minimum (ARPM) ou arbre couvrant minimum (ACM) dans un graphe connexe non-orienté et pondéré. Il a été conçu en 1956 par Joseph Kruskal. On considère un graphe connexe non-orienté et pondéré : chaque arête possède un poids qui est un nombre qui représente le coût de cette arête. Dans un tel graphe, un arbre couvrant est un sous-graphe connexe sans cycle qui contient tous les sommets du graphe.
Arbre couvrant de poids minimal
thumb|L'arbre couvrant de poids minimal d'un graphe planaire. Chaque arête est identifiée avec son poids qui, ici, est approximativement sa longueur. En théorie des graphes, étant donné un graphe non orienté connexe dont les arêtes sont pondérées, un arbre couvrant de poids minimal (ACM), arbre couvrant minimum ou arbre sous-tendant minimum de ce graphe est un arbre couvrant (sous-ensemble qui est un arbre et qui connecte tous les sommets ensemble) dont la somme des poids des arêtes est minimale (c'est-à-dire de poids inférieur ou égal à celui de tous les autres arbres couvrants du graphe).
D-ary heap
The d-ary heap or d-heap is a priority queue data structure, a generalization of the binary heap in which the nodes have d children instead of 2. Thus, a binary heap is a 2-heap, and a ternary heap is a 3-heap. According to Tarjan and Jensen et al., d-ary heaps were invented by Donald B. Johnson in 1975. This data structure allows decrease priority operations to be performed more quickly than binary heaps, at the expense of slower delete minimum operations.
Algorithme de recherche best-first
La recherche best-first (littéralement : le meilleur en premier) est un algorithme de recherche qui parcourt un graphe en explorant le nœud le plus "prometteur" selon une règle spécifique. Judea Pearl décrit la recherche best-first comme l'estimation de la qualité d'un nœud n par une "fonction heuristique d'évaluation qui, en général, peut dépendre de la description de n, de l'état d'arrivée, des informations amassées par l'algorithme au moment de l'évaluation et, surtout, de connaissances supplémentaires à propos du problème".

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.