In the mathematical field of , the product of two C and D, denoted C × D and called a product category, is an extension of the concept of the Cartesian product of two sets. Product categories are used to define bifunctors and multifunctors. The product category C × D has: as : pairs of objects (A, B), where A is an object of C and B of D; as arrows from (A1, B1) to (A2, B2): pairs of arrows (f, g), where f : A1 → A2 is an arrow of C and g : B1 → B2 is an arrow of D; as composition, component-wise composition from the contributing categories: (f2, g2) o (f1, g1) = (f2 o f1, g2 o g1); as identities, pairs of identities from the contributing categories: 1(A, B) = (1A, 1B). For , this is the same as the action on objects of the categorical product in the category . A functor whose domain is a product category is known as a bifunctor. An important example is the Hom functor, which has the product of the of some category with the original category as domain: Hom : Cop × C → Set. Just as the binary Cartesian product is readily generalized to an n-ary Cartesian product, binary product of two categories can be generalized, completely analogously, to a product of n categories. The product operation on categories is commutative and associative, up to isomorphism, and so this generalization brings nothing new from a theoretical point of view.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.