Résumé
En mathématiques, et plus précisément en théorie des catégories, une propriété universelle est la propriété des objets qui sont la solution d'un problème universel posé par un foncteur. De très nombreux objets classiques des mathématiques, comme la notion de produit cartésien, de groupe quotient, ou de compactifié, peuvent être définis comme des solutions de problèmes universels. Soit F un foncteur d'une catégorie dans la catégorie des ensembles ; un couple (A, θ) où A est un objet de et est « solution du problème universel posé par F » si la propriété suivante, dite universelle, est vérifiée : Pour tout objet X de , pour tout élément f de , il existe un unique morphisme g : A → X tel que : Le foncteur F est le foncteur associé à la propriété universelle. Lorsqu'il existe une solution (A, θ) au problème universel posé par F, la propriété universelle établit, pour tout objet X, que est une bijection entre l'ensemble Hom(A,X) des morphismes de A vers X, et F(X). est un isomorphisme naturel entre le foncteur représenté par A et le foncteur F. La relation entre l'élément θ de F(A) et cet isomorphisme naturel n'est autre que celle qui est donnée par le lemme de Yoneda. La solution d'un problème universel, lorsqu'elle existe, est unique à isomorphisme près (et cet isomorphisme est alors nécessairement unique). Soit en effet (A, θ) la solution du problème posé par le foncteur F. Si on prend pour (X, f) (A, θ) lui-même, il existe un unique morphisme g : A → A tel que F(g)(θ) = θ. Comme g = idA vérifie cette propriété, l'unicité de la solution prouve que, pour tout morphisme g : A → A, F(g)(θ) = θ implique g = idA. Soit maintenant une autre solution (B, φ) du problème posé par F. (A, θ) étant solution, en prenant (X, f) = (B, φ), il existe un morphisme g : A → B tel que F(g)(θ) = φ. Mais (B, φ) étant aussi solution, en prenant (X, f) = (A, θ), il existe un morphisme h : B → A tel que F(h)(φ) = θ. On a donc F(hg)(θ) = θ et donc hg = idA. De même, F(gh)(φ) = φ donc gh = idB.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (16)
MATH-111(e): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
MATH-436: Homotopical algebra
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
MATH-111(a): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
Afficher plus
Personnes associées (2)