Problème à promesseDans la théorie de la complexité computationnelle, un problème à promesse est une généralisation d'un problème de décision où l'entrée doit appartenir à un sous-ensemble donné de toutes les entrées possibles (la promesse ou précondition), et la sortie reste binaire. Contrairement aux problèmes de décision, les instances positives et négatives n'épuisent pas l'ensemble de toutes les entrées. Si une entrée qui ne satisfait pas la promesse est donnée à un algorithme pour résoudre un problème de promesse, l'algorithme est autorisé à produire n'importe quoi, et peut même ne pas s'arrêter.
Problème de rechercheEn informatique théorique, et plus particulièrement en théorie de la complexité et en théorie de la calculabilité, un problème de recherche est un problème algorithmique associé à une relation binaire. Si R est une relation binaire telle que pour tout (R) ⊆ Γ+ et T une machine de Turing, alors T implante R si: Si x est tel qu'il existe un y vérifiant R(x, y) alors T accepte l'entrée x en produisant un résultat z tel que R(x, z) (s'il y a plusieurs y, T n'est astreint à n'en trouver qu'un seul) Si x est tel qu'il n'existe aucune y tel que R(x, y) alors T rejette l'entrée x De manière intuitive, un problème de recherche consiste à trouver, s'il existe, un objet "y" associé à un objet "x".
Undecidable problemIn computability theory and computational complexity theory, an undecidable problem is a decision problem for which it is proved to be impossible to construct an algorithm that always leads to a correct yes-or-no answer. The halting problem is an example: it can be proven that there is no algorithm that correctly determines whether arbitrary programs eventually halt when run. A decision problem is a question which, for every input in some infinite set of inputs, answers "yes" or "no"..
Quantum complexity theoryQuantum complexity theory is the subfield of computational complexity theory that deals with complexity classes defined using quantum computers, a computational model based on quantum mechanics. It studies the hardness of computational problems in relation to these complexity classes, as well as the relationship between quantum complexity classes and classical (i.e., non-quantum) complexity classes. Two important quantum complexity classes are BQP and QMA.
Function problemIn computational complexity theory, a function problem is a computational problem where a single output (of a total function) is expected for every input, but the output is more complex than that of a decision problem. For function problems, the output is not simply 'yes' or 'no'. A functional problem is defined by a relation over strings of an arbitrary alphabet : An algorithm solves if for every input such that there exists a satisfying , the algorithm produces one such , and if there are no such , it rejects.
Circuit complexityIn theoretical computer science, circuit complexity is a branch of computational complexity theory in which Boolean functions are classified according to the size or depth of the Boolean circuits that compute them. A related notion is the circuit complexity of a recursive language that is decided by a uniform family of circuits (see below). Proving lower bounds on size of Boolean circuits computing explicit Boolean functions is a popular approach to separating complexity classes.
P (complexité)La classe P, aussi noté parfois PTIME ou DTIME(nO(1)), est une classe très importante de la théorie de la complexité, un domaine de l'informatique théorique et des mathématiques. Par définition, un problème de décision est dans P s'il est décidé par une machine de Turing déterministe en temps polynomial par rapport à la taille de l'entrée. On dit que le problème est décidé en temps polynomial. Les problèmes dans P sont considérés comme « faisables » (feasible en anglais), faciles à résoudre (dans le sens où on peut le faire relativement rapidement).
Model of computationIn computer science, and more specifically in computability theory and computational complexity theory, a model of computation is a model which describes how an output of a mathematical function is computed given an input. A model describes how units of computations, memories, and communications are organized. The computational complexity of an algorithm can be measured given a model of computation. Using a model allows studying the performance of algorithms independently of the variations that are specific to particular implementations and specific technology.
Informatique théoriquevignette|Une représentation artistique d'une machine de Turing. Les machines de Turing sont un modèle de calcul. L'informatique théorique est l'étude des fondements logiques et mathématiques de l'informatique. C'est une branche de la science informatique et la science formelle. Plus généralement, le terme est utilisé pour désigner des domaines ou sous-domaines de recherche centrés sur des vérités universelles (axiomes) en rapport avec l'informatique.
Problème de décisionEn informatique théorique, un problème de décision est une question mathématique dont la réponse est soit « oui », soit « non ». Les logiciens s'y sont intéressés à cause de l'existence ou de la non-existence d'un algorithme répondant à la question posée. Les problèmes de décision interviennent dans deux domaines de la logique : la théorie de la calculabilité et la théorie de la complexité. Parmi les problèmes de décision citons par exemple le problème de l'arrêt, le problème de correspondance de Post ou le dernier théorème de Fermat.