Corps de nombresEn mathématiques, un corps de nombres algébriques (ou simplement corps de nombres) est une extension finie K du corps Q des nombres rationnels. En particulier, c'est une extension algébrique : tous les éléments de K sont des nombres algébriques, dont le degré divise le degré de l'extension. C'est aussi une extension séparable car Q est de caractéristique nulle donc parfait. Tout sous-corps de C engendré par un nombre fini de nombres algébriques est un corps de nombres.
Anneau des entiersEn algèbre commutative, l'anneau des entiers est une construction que l'on peut obtenir à partir de tout corps de nombres en considérant ses éléments entiers. Par exemple, l'anneau des entiers de est . Il existe des algorithmes efficaces pour calculer cet anneau pour tout corps de nombres. La notion peut en fait être étendue à d'autres objets (notamment les corps de fonctions), et porte une interprétation géométrique. Élément entier Soit K un corps de nombres. Un élément de K est dit entier s'il est racine d'un polynôme unitaire à coefficients dans .
Fonction zêta de DedekindEn mathématiques, la fonction zêta de Dedekind est une série de Dirichlet définie pour tout corps de nombres K. C'est la fonction de la variable complexe s définie par la somme infinie : prise sur tous les idéaux I non nuls de l'anneau O des entiers de K, où N(I) désigne la norme de I (relative au corps Q des rationnels). Cette norme est égale au cardinal de l'anneau quotient O/I. En particulier, ζ est la fonction zêta de Riemann. Les propriétés de la fonction méromorphe ζ ont une signification considérable en théorie algébrique des nombres.
Formule du nombre de classesEn théorie des nombres, la formule du nombre de classes relie de nombreux invariants importants d'un corps de nombres à une valeur spécifique de sa fonction zêta de Dedekind. Nous partons des données suivantes : K est un corps de nombres. où est le nombre de plongements réels de K, et plongements complexes K. la fonction zêta de Dedekind de K. le nombre de classes, le cardinal du groupe des classes d'idéaux de K. le régulateur de K. le nombre de racines de l'unité dans K. est le discriminant de l'extension .
Extension cyclotomiqueEn théorie algébrique des nombres, on appelle extension cyclotomique du corps Q des nombres rationnels tout corps de rupture d'un polynôme cyclotomique, c'est-à-dire tout corps de la forme Q(ζ) où ζ est une racine de l'unité. Ces corps jouent un rôle crucial, d'une part dans la compréhension de certaines équations diophantiennes : par exemple, l'arithmétique (groupe des classes, notamment) de leur anneau des entiers permet de montrer le dernier théorème de Fermat dans de nombreux cas (voir nombre premier régulier) ; mais aussi, dans la compréhension des extensions algébriques de Q, ce qui peut être considéré comme une version abstraite du problème précédent : le théorème de Kronecker-Weber, par exemple, assure que toute extension abélienne est contenue dans une extension cyclotomique.
K-théorie algébriqueEn mathématiques, la K-théorie algébrique est une branche importante de l'algèbre homologique. Son objet est de définir et d'appliquer une suite de foncteurs K de la catégorie des anneaux dans celle des groupes abéliens. Pour des raisons historiques, K et K sont conçus en des termes un peu différents des K pour n ≥ 2. Ces deux K-groupes sont en effet plus accessibles et ont plus d'applications que ceux d'indices supérieurs. La théorie de ces derniers est bien plus profonde et ils sont beaucoup plus difficiles à calculer, ne serait-ce que pour l'anneau des entiers.
Entier algébriqueEn mathématiques, un entier algébrique est un élément d'un corps de nombres qui y joue un rôle analogue à celui d'un entier relatif dans le corps des nombres rationnels. L'étude des entiers algébriques est à la base de l'arithmétique des corps de nombres, et de la généralisation dans ces corps de notions comme celles de nombre premier ou de division euclidienne. Par définition, un entier algébrique est une racine d'un polynôme unitaire à coefficients dans Z.