Euclidean plane isometryIn geometry, a Euclidean plane isometry is an isometry of the Euclidean plane, or more informally, a way of transforming the plane that preserves geometrical properties such as length. There are four types: translations, rotations, reflections, and glide reflections (see below under ). The set of Euclidean plane isometries forms a group under composition: the Euclidean group in two dimensions. It is generated by reflections in lines, and every element of the Euclidean group is the composite of at most three distinct reflections.
Chirality (mathematics)In geometry, a figure is chiral (and said to have chirality) if it is not identical to its , or, more precisely, if it cannot be mapped to its mirror image by rotations and translations alone. An object that is not chiral is said to be achiral. A chiral object and its mirror image are said to be enantiomorphs. The word chirality is derived from the Greek χείρ (cheir), the hand, the most familiar chiral object; the word enantiomorph stems from the Greek ἐναντίος (enantios) 'opposite' + μορφή (morphe) 'form'.
Ordre de symétriethumb|Une sphère colorée permet d'illustrer les 48 domaines fondamentaux de la symétrie octaédrique. L'ordre de symétrie d'un objet est le nombre d'arrangements distincts pour lequel l'objet en question est globalement invariant. En d'autres termes, il s'agit de l'ordre de son groupe de symétrie. L'objet en question peut être une molécule, un réseau cristallin, un pavage et de manière plus générale, tout objet mathématique en N-dimensions. Théorie des groupes, une branche des mathématiques qui traite des pr