Orbifold notationIn geometry, orbifold notation (or orbifold signature) is a system, invented by the mathematician William Thurston and promoted by John Conway, for representing types of symmetry groups in two-dimensional spaces of constant curvature. The advantage of the notation is that it describes these groups in a way which indicates many of the groups' properties: in particular, it follows William Thurston in describing the orbifold obtained by taking the quotient of Euclidean space by the group under consideration.
Screw axisA screw axis (helical axis or twist axis) is a line that is simultaneously the axis of rotation and the line along which translation of a body occurs. Chasles' theorem shows that each Euclidean displacement in three-dimensional space has a screw axis, and the displacement can be decomposed into a rotation about and a slide along this screw axis. Plücker coordinates are used to locate a screw axis in space, and consist of a pair of three-dimensional vectors. The first vector identifies the direction of the axis, and the second locates its position.
Diffraction de neutronsLa diffractométrie de neutrons est une technique d'analyse basée sur la diffraction des neutrons sur la matière. Elle est complémentaire à la diffractométrie de rayons X. L'appareil de mesure utilisé s'appelle un diffractomètre. Les données collectées forment le diagramme de diffraction ou diffractogramme. La diffraction n'ayant lieu que sur la matière cristalline, on parle aussi de radiocristallographie. Pour les matériaux non-cristallins, on parle de diffusion. La diffraction fait partie des méthodes de diffusion élastique.
Système cristallin orthorhombiqueEn cristallographie, le système cristallin orthorhombique est l'un des sept systèmes cristallins dans lesquels on classe les cristaux selon leurs propriétés de symétrie. Tout cristal orthorhombique possède comme opération de symétrie une rotation binaire ou une réflexion, voire les deux, selon trois directions perpendiculaires qui sont choisies comme axes du référentiel.
Arthur Moritz SchoenfliesArthur Moritz Schoenflies (ou Schönflies), né le à Landsberg-sur-la-Warthe et mort le à Francfort-sur-le-Main, est un mathématicien allemand de la fin du et du début du , célèbre pour sa proposition de classement des cristaux en 230 groupes d'espace publiée en 1891 et pour sa notation des groupes ponctuels de symétrie et des groupes d'espace, communément appelée la notation Schoenflies. Il commence à étudier les mathématiques à l'université Humboldt de Berlin juste après la guerre de 1870 avec Ernst Kummer et Karl Weierstrass.
Notation SchoenfliesLa notation Schoenflies (ou Schönflies ou Schönfließ), du nom d'Arthur Moritz Schoenflies, est l'une de deux conventions communes utilisées pour décrire les groupes ponctuels de symétrie (aussi appelés groupes cristallographiques). Cette notation est utilisée en spectroscopie. L'autre convention est la notation Hermann-Mauguin, aussi connue sous le nom de notation internationale. Un groupe ponctuel de symétrie dans la convention de Schoenflies est complètement adéquat pour décrire la symétrie de la molécule ; c'est suffisant pour la spectroscopie.
Rigid transformationIn mathematics, a rigid transformation (also called Euclidean transformation or Euclidean isometry) is a geometric transformation of a Euclidean space that preserves the Euclidean distance between every pair of points. The rigid transformations include rotations, translations, reflections, or any sequence of these. Reflections are sometimes excluded from the definition of a rigid transformation by requiring that the transformation also preserve the handedness of objects in the Euclidean space.
Square latticeIn mathematics, the square lattice is a type of lattice in a two-dimensional Euclidean space. It is the two-dimensional version of the integer lattice, denoted as \mathbb{Z}^2. It is one of the five types of two-dimensional lattices as classified by their symmetry groups; its symmetry group in IUC notation as p4m, Coxeter notation as [4,4], and orbifold notation as *442. Two orientations of an image of the lattice are by far the most common.
Point groups in two dimensionsIn geometry, a two-dimensional point group or rosette group is a group of geometric symmetries (isometries) that keep at least one point fixed in a plane. Every such group is a subgroup of the orthogonal group O(2), including O(2) itself. Its elements are rotations and reflections, and every such group containing only rotations is a subgroup of the special orthogonal group SO(2), including SO(2) itself. That group is isomorphic to R/Z and the first unitary group, U(1), a group also known as the circle group.
Infinite dihedral groupIn mathematics, the infinite dihedral group Dih∞ is an infinite group with properties analogous to those of the finite dihedral groups. In two-dimensional geometry, the infinite dihedral group represents the frieze group symmetry, p1m1, seen as an infinite set of parallel reflections along an axis. Every dihedral group is generated by a rotation r and a reflection; if the rotation is a rational multiple of a full rotation, then there is some integer n such that rn is the identity, and we have a finite dihedral group of order 2n.