vignette|Visualisation de l'expansion binomiale
La formule du binôme de Newton est une formule mathématique donnée par Isaac Newton pour trouver le développement d'une puissance entière quelconque d'un binôme. Elle est aussi appelée formule du binôme ou formule de Newton.
Si x et y sont deux éléments d'un anneau (par exemple deux nombres réels ou complexes, deux polynômes, deux matrices carrées de même taille, etc.) qui commutent (c'est-à-dire tels que xy = yx — par exemple pour des matrices : y = la matrice identité) alors, pour tout entier naturel n,
où les nombres
(parfois aussi notés C) sont les coefficients binomiaux, « ! » désignant la factorielle et x l'élément unité de l'anneau.
En remplaçant dans la formule y par –y, on obtient :
Exemples :
On peut démontrer la formule de l'énoncé par récurrence.
Une preuve plus intuitive utilise le fait que le coefficient binomial est le nombre de parties à k éléments dans un ensemble à n éléments. Quand on développe l'expression
on obtient une somme de monômes de la forme xy où j et k représentent respectivement le nombre de fois qu'on a choisi x ou y en développant. On a forcément j = n – k, puisqu'à chaque fois qu'on ne choisit pas y, on choisit x. Enfin, comme il y a manières différentes de choisir k fois la valeur y parmi les n expressions (x + y) multipliées ci-dessus, le monôme xy doit apparaître dans le développement avec le coefficient .
La démonstration par récurrence peut être calquée pour démontrer la formule de Leibniz pour la dérivée n-ième d'un produit.
La méthode combinatoire de sa variante permet de généraliser l'identité polynomiale
en
où les σ désignent les polynômes symétriques élémentaires.
Il est également possible de généraliser la formule à des sommes de m termes complexes élevées à une puissance entière n (voir l'article Formule du multinôme de Newton) :
et à des exposants non entiers (voir l'article Formule du binôme généralisée) ou entiers négatifs (voir l'article Formule du binôme négatif).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
thumb|Premières lignes du triangle de Pascal. En mathématiques, le triangle de Pascal est une présentation des coefficients binomiaux dans un tableau triangulaire. Il a été nommé ainsi en l'honneur du mathématicien français Blaise Pascal. Il est connu sous l'appellation « triangle de Pascal » en Occident, bien qu'il ait été étudié par d'autres mathématiciens, parfois plusieurs siècles avant lui, en Inde, en Perse (où il est appelé « triangle de Khayyam »), au Maghreb, en Chine (où il est appelé « triangle de Yang Hui »), en Allemagne et en Italie (où il est appelé « triangle de Tartaglia »).
En mathématiques, l’exponentiation est une opération binaire non commutative qui étend la notion de puissance d'un nombre en algèbre. Elle se note en plaçant l'un des opérandes en exposant (d'où son nom) de l'autre, appelé base. Pour des exposants rationnels, l'exponentiation est définie algébriquement de façon à satisfaire la relation : Pour des exposants réels, complexes ou matriciels, la définition passe en général par l'utilisation de la fonction exponentielle, à condition que la base admette un logarithme : L'exponentiation ensembliste est définie à l'aide des ensembles de fonctions : Elle permet de définir l'exponentiation pour les cardinaux associés.
En mathématiques, les coefficients binomiaux, ou coefficients du binôme, définis pour tout entier naturel n et tout entier naturel k inférieur ou égal à n, donnent le nombre de parties à k éléments d'un ensemble à n éléments. On les note - qui se lit « k parmi n » - ou , la lettre C étant l'initiale du mot « combinaison » Les coefficients binomiaux s'expriment à l'aide de la fonction factorielle : Ils interviennent dans de nombreux domaines des mathématiques : développement du binôme en algèbre, dénombrements, développement en série, lois de probabilités, etc.
We study the critical O(3) model using the numerical conformal bootstrap. In particular, we use a recently developed cutting-surface algorithm to efficiently map out the allowed space of conformal field theory data from correlators involving the leading O( ...
Observers discriminated the numerical proportion of two sets of elements (N = 9, 13, 33, and 65) that differed either by color or orientation. According to the standard Thurstonian approach, the accuracy of proportion discrimination is determined by irredu ...
We prove a conjecture of Lecouvey, which proposes a closed, positive combinatorial formula for symplectic Kostka-Foulkes polynomials, in the case of rows of arbitrary weight. To show this, we construct a new algorithm for computing cocyclage in terms of wh ...