This is a summary of differentiation rules, that is, rules for computing the derivative of a function in calculus.
Unless otherwise stated, all functions are functions of real numbers (R) that return real values; although more generally, the formulae below apply wherever they are well defined — including the case of complex numbers (C).
For any value of , where , if is the constant function given by , then .
Let and . By the definition of the derivative,
This shows that the derivative of any constant function is 0.
Linearity of differentiation
For any functions and and any real numbers and , the derivative of the function with respect to is:
In Leibniz's notation this is written as:
Special cases include:
The constant factor rule
The sum rule
The subtraction rule
Product rule
For the functions f and g, the derivative of the function h(x) = f(x) g(x) with respect to x is
In Leibniz's notation this is written
Chain rule
The derivative of the function is
In Leibniz's notation, this is written as:
often abridged to
Focusing on the notion of maps, and the differential being a map , this is written in a more concise way as:
Inverse functions and differentiation
If the function f has an inverse function g, meaning that and then
In Leibniz notation, this is written as
Power rule
If , for any real number then
When this becomes the special case that if then
Combining the power rule with the sum and constant multiple rules permits the computation of the derivative of any polynomial.
Reciprocal rule
The derivative of for any (nonvanishing) function f is:
wherever f is non-zero.
In Leibniz's notation, this is written
The reciprocal rule can be derived either from the quotient rule, or from the combination of power rule and chain rule.
Quotient rule
If f and g are functions, then:
wherever g is nonzero.
This can be derived from the product rule and the reciprocal rule.
Power rule
The elementary power rule generalizes considerably. The most general power rule is the functional power rule: for any functions f and g,
wherever both sides are well defined.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques et plus particulièrement en analyse et en analyse complexe, la dérivée logarithmique d'une fonction f dérivable ne s'annulant pas est la fonction : où f est la dérivée de f. Lorsque la fonction f est à valeurs réelles strictement positives, la dérivée logarithmique coïncide avec la dérivée de la composée de f par la fonction logarithme ln, comme le montre la formule de la dérivée d'une composée de fonctions.
In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let , where both f and g are differentiable and The quotient rule states that the derivative of h(x) is It is provable in many ways by using other derivative rules. Given , let , then using the quotient rule: The quotient rule can be used to find the derivative of as follows: Reciprocal rule The reciprocal rule is a special case of the quotient rule in which the numerator .
En analyse mathématique, la règle du produit, aussi appelée règle de Leibniz, est une formule utilisée afin de trouver les dérivées de produits de fonctions. Sous sa forme la plus simple, elle s'énonce ainsi : En notation de Leibniz, cette formule s'écrit : Une application importante de la règle du produit est la méthode d'intégration par parties. Soit la fonction définie par : Pour trouver sa dérivée avec la règle du produit, on pose et . Les fonctions , et sont partout dérivables car polynomiales.
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
We present a strikingly simple proof that two rules are sufficient to automate gradient descent: 1) don’t increase the stepsize too fast and 2) don’t overstep the local curvature. No need for functional values, no line search, no information about the func ...
2020
, ,
Physically-based differentiable rendering has recently emerged as an attractive new technique for solving inverse problems that recover complete 3D scene representations from images. The inversion of shape parameters is of particular interest but also pose ...
ASSOC COMPUTING MACHINERY2022
, ,
Physically based differentiable rendering has recently evolved into a powerful tool for solving inverse problems involving light. Methods in this area perform a differentiable simulation of the physical process of light transport and scattering to estimate ...