Équation différentielleEn mathématiques, une équation différentielle est une équation dont la ou les « inconnue(s) » sont des fonctions ; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. C'est un cas particulier d'équation fonctionnelle. On distingue généralement deux types d'équations différentielles : les équations différentielles ordinaires (EDO) où la ou les fonctions inconnues recherchées ne dépendent que d'une seule variable ; les équations différentielles partielles, plutôt appelées équations aux dérivées partielles (EDP), où la ou les fonctions inconnues recherchées peuvent dépendre de plusieurs variables indépendantes.
Valeur propre, vecteur propre et espace propreEn mathématiques, et plus particulièrement en algèbre linéaire, le concept de vecteur propre est une notion algébrique s'appliquant à une application linéaire d'un espace dans lui-même. Il correspond à l'étude des axes privilégiés, selon lesquels l'application se comporte comme une dilatation, multipliant les vecteurs par une même constante. Ce rapport de dilatation est appelé valeur propre, les vecteurs auxquels il s'applique s'appellent vecteurs propres, réunis en un espace propre.
Espace de Hilbertvignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
Méthode des éléments finisEn analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques).
Fredholm theoryIn mathematics, Fredholm theory is a theory of integral equations. In the narrowest sense, Fredholm theory concerns itself with the solution of the Fredholm integral equation. In a broader sense, the abstract structure of Fredholm's theory is given in terms of the spectral theory of Fredholm operators and Fredholm kernels on Hilbert space. The theory is named in honour of Erik Ivar Fredholm. The following sections provide a casual sketch of the place of Fredholm theory in the broader context of operator theory and functional analysis.
Fonction de GreenEn mathématiques et en physique, une fonction de Green est une solution (également appelée solution élémentaire ou solution fondamentale) d'une équation différentielle linéaire à coefficients constants, ou d'une équation aux dérivées partielles linéaire à coefficients constants. Ces « fonctions » de Green, qui se trouvent être le plus souvent des distributions, ont été introduites par George Green en 1828 pour les besoins de l'électromagnétisme. Le mémoire de Green restera confidentiel jusqu'à sa republication en trois parties, à partir de 1850.
Integral transformIn mathematics, an integral transform maps a function from its original function space into another function space via integration, where some of the properties of the original function might be more easily characterized and manipulated than in the original function space. The transformed function can generally be mapped back to the original function space using the inverse transform. An integral transform is any transform of the following form: The input of this transform is a function , and the output is another function .
Équation intégro-différentielleEn analyse fonctionnelle, une équation intégro-différentielle ou équation intégrodifférentielle est une équation qui fait intervenir à la fois les dérivées d'une fonction et ses intégrales. Une équation intégro-différentielle du premier ordre peut s'écrire sous la forme La résolution exacte d'une telle équation est souvent difficile et passe souvent par l'utilisation des transformations (transformation de Laplace, Fourier...) En astrophysique, l'équation de Schwarzschild-Milne, qui décrit la diffusion de la lumière dans les atmosphère stellaires, est intégro-différentielle.
Opérateur de FredholmEn mathématiques, l'opérateur de Fredholm est un concept d'analyse fonctionnelle qui porte le nom du mathématicien suédois Ivar Fredholm (1866-1927). Il s'agit d'un opérateur borné L entre deux espaces de Banach X et Y ayant un noyau de dimension finie et une image de codimension finie. On peut alors définir l'indice de l'opérateur comme Sous ces hypothèses, l'espace image de L est fermé (il admet même un supplémentaire topologique).
Équation intégrale de FredholmEn mathématiques, l'équation intégrale de Fredholm est une équation intégrale étudiée par Ivar Fredholm. La caractéristique principale d'une équation de Fredholm est que les bornes d'intégration sont constantes. Son étude donne naissance à la , à l'étude des et des opérateurs de Fredholm. Il s'agit d'une équation intégrale de la forme : La notation est celle d'Arfken et Weber. Ici la fonction inconnue est Φ, tandis que f et K sont des fonctions connues. La fonction de deux variables K est souvent appelée la fonction opérateur intégral du noyau.