AdégalitéL’adégalité, dans l'histoire du calcul infinitésimal, est une technique développée par Pierre de Fermat, dont il dit qu'il l'a empruntée à Diophante. L'adégalité a été interprétée par certains chercheurs comme signifiant « l'égalité approximative ». John Stillwell illustre la technique dans le cadre de différentiation de comme suit. Si nous désignons l'adégalité par , alors il est juste de dire que et donc que pour la parabole est adégal à . Cependant, n'est pas un nombre ; en fait, est le seul nombre auquel est adégal.
École du Keralathumb|Région du Kerala, Inde L’école du Kerala est une école de mathématiques et d'astronomie fondée par Madhava de Sangamagrama dans la province du Kerala en Inde, et ayant eu entre autres pour membres et Nilakantha Somayaji. Elle prospéra entre le et le , s'achevant avec les travaux de Melpathur Narayana Bhattathiri. Les découvertes mathématiques de l'école anticipent de deux siècles certains des résultats du calcul infinitésimal de Newton et Leibniz (mais non leurs techniques), obtenant par exemple le développement en série entière des fonctions trigonométriques, mais il n'y a pas de preuve que ces découvertes se soient diffusées en dehors du Kerala.
Mesure de JordanEn mathématiques, la mesure de Peano-Jordan est une extension de la notion de taille (longueur, aire, volume), aisément définie pour des domaines simples tels que le rectangle ou le parallélépipède, à des formes plus compliquées. La mesure de Jordan s'avère trop restrictive pour certains ensembles qu'on pourrait souhaiter être mesurables. Pour cette raison, il est maintenant plus fréquent de travailler avec la mesure de Lebesgue, qui est une extension de la mesure de Jordan à une plus grande classe d'ensembles.
Camille Jordan (mathématicien)Marie Ennemond Camille Jordan, né le à Lyon et mort le à Paris, est un mathématicien français, connu à la fois pour son travail fondamental dans la théorie des groupes et pour son influent Cours d'analyse. Son père Esprit-Alexandre Jordan (1800-1888), polytechnicien (1818), fut député de Saône-et-Loire (1871-1876) et sa mère Joséphine était la sœur du peintre Pierre Puvis de Chavannes. Il étudia à l'École polytechnique (Promotion 1855).
Cours d'Analysevignette| Page de titre Cours d'Analyse de l'École Royale Polytechnique ; Ière partie. Analyse algébrique est un manuel fondateur du calcul infinitésimal publié par Augustin-Louis Cauchy en 1821. Il reprend une partie du cours d'analyse de année dispensé à l'Ecole polytechnique, et a participé à la réputation du mathématicien et de l'école. À la page 1 de l'Introduction, Cauchy écrit : Cauchy poursuit : À la page 4, Cauchy discute d'abord des grandeurs variables, puis introduit la notion de limite dans les termes suivants : Plus bas sur la même page, Cauchy définit un infinitésimal comme suit : Cauchy ajoute : La notation est présentée à la page 13.
Axiome du choix dénombrablevignette|Chaque ensemble dans la suite dénombrable d'ensembles (Si) = S1, S2, S3, ... contient un élément différent de zéro, et éventuellement une infinité (ou même une infinité indénombrable) d'éléments. L'axiome du choix dénombrable nous permet de sélectionner arbitrairement un seul élément de chaque ensemble, formant une suite correspondante d'éléments (xi) = x1, x2, x3, ...
Mesure de comptageLa mesure de comptage (ou mesure de dénombrement) est une mesure positive associée à la cardinalité d'un ensemble. Si l'on note la mesure de comptage sur la tribu des parties d'un ensemble , on a, pour tout : Par définition de l'intégrale de Lebesgue, pour toute application , on a : L'intégrale pour la mesure de comptage est donc une somme (ou une série). Elle est particulièrement utile avec les suites numériques. Ainsi les divers théorèmes associés à la théorie de la mesure s'appliquent aux séries (inversion série/intégrale et série/limite par exemple).
Développement décimalEn mathématiques, le développement décimal est une façon d'écrire des nombres réels positifs à l'aide des puissances de dix (d'exposant positif ou négatif). Lorsque les nombres sont des entiers naturels, le développement décimal correspond à l'écriture en base dix. Lorsqu'ils sont décimaux, on obtient un développement décimal limité. Lorsqu'ils sont rationnels, on obtient soit, encore, un développement décimal limité, soit un développement décimal illimité, mais alors nécessairement périodique.
Smooth infinitesimal analysisSmooth infinitesimal analysis is a modern reformulation of the calculus in terms of infinitesimals. Based on the ideas of F. W. Lawvere and employing the methods of , it views all functions as being continuous and incapable of being expressed in terms of discrete entities. As a theory, it is a subset of synthetic differential geometry. The nilsquare or nilpotent infinitesimals are numbers ε where ε2 = 0 is true, but ε = 0 need not be true at the same time.
Non-measurable setIn mathematics, a non-measurable set is a set which cannot be assigned a meaningful "volume". The mathematical existence of such sets is construed to provide information about the notions of length, area and volume in formal set theory. In Zermelo–Fraenkel set theory, the axiom of choice entails that non-measurable subsets of exist. The notion of a non-measurable set has been a source of great controversy since its introduction. Historically, this led Borel and Kolmogorov to formulate probability theory on sets which are constrained to be measurable.