Concepts associés (14)
Graphe sommet-connexe
En théorie des graphes, un graphe connexe . Un graphe autre qu'un graphe complet est de degré de sommet-connexité k s'il est k-sommet-connexe sans être k+1-sommet-connexe, donc si k est la taille du plus petit sous-ensemble de sommets dont la suppression déconnecte le graphe. Les graphes complets ne sont pas inclus dans cette version de la définition car ils ne peuvent pas être déconnectés en supprimant des sommets. Le graphe complet à n sommets est de degré de connexité n-1.
Biconnected graph
In graph theory, a biconnected graph is a connected and "nonseparable" graph, meaning that if any one vertex were to be removed, the graph will remain connected. Therefore a biconnected graph has no articulation vertices. The property of being 2-connected is equivalent to biconnectivity, except that the complete graph of two vertices is usually not regarded as 2-connected. This property is especially useful in maintaining a graph with a two-fold redundancy, to prevent disconnection upon the removal of a single edge (or connection).
Graphe d'intersection
En théorie des graphes, un graphe d'intersection est un graphe représentant les intersections d'une famille d'ensembles. Plus précisément, pour une famille d'ensembles finie donnée, on associe à chaque ensemble un sommet, et deux sommets sont reliés par une arête si les ensembles ont une intersection non nulle. Beaucoup de familles de graphe sont définies par l'intersection d'ensembles géométriques, par exemple des sphères dans le plan, ou des intervalles sur une droite.
Connectivity (graph theory)
In mathematics and computer science, connectivity is one of the basic concepts of graph theory: it asks for the minimum number of elements (nodes or edges) that need to be removed to separate the remaining nodes into two or more isolated subgraphs. It is closely related to the theory of network flow problems. The connectivity of a graph is an important measure of its resilience as a network. In an undirected graph G, two vertices u and v are called connected if G contains a path from u to v.
Isthme (théorie des graphes)
In graph theory, a bridge, isthmus, cut-edge, or cut arc is an edge of a graph whose deletion increases the graph's number of connected components. Equivalently, an edge is a bridge if and only if it is not contained in any cycle. For a connected graph, a bridge can uniquely determine a cut. A graph is said to be bridgeless or isthmus-free if it contains no bridges. This type of bridge should be distinguished from an unrelated meaning of "bridge" in graph theory, a subgraph separated from the rest of the graph by a specified subset of vertices; see bridge.
Sommet (théorie des graphes)
vignette|Dans ce graphe, les sommets 4 et 5 sont voisins alors que les sommets 3 et 5 sont indépendants. Le degré du sommet 4 est égal à 3. Le sommet 6 est une feuille. En théorie des graphes, un sommet, aussi appelé nœud et plus rarement point, est l'unité fondamentale d'un graphe. Deux sommets sont voisins s'ils sont reliés par une arête. Deux sommets sont indépendants s'ils ne sont pas voisins. alt=A small example network with 8 vertices and 10 edges.|vignette|Réseau de huit sommets (dont un isolé) et 10 arêtes.
Graphe cactus
vignette|upright=1.4| Un graphe cactus. En théorie des graphes, un graphe cactus (parfois appelé arbre cactus) est un graphe connexe dans lequel deux cycles simples quelconques ont au plus un sommet en commun. De manière équivalente, c'est un graphe connexe dans lequel chaque arête appartient à au plus un cycle simple, ou (pour les cactus non triviaux) dans lequel chaque bloc (sous-graphe maximal sans point d'articulation) est une arête ou un cycle.
Clique (théorie des graphes)
thumb|Exemple de graphe possédant une 3-clique (en rouge) : les trois sommets de ce sous-graphe sont tous adjacents deux-à-deux. thumb|Exemple de « biclique » : le graphe biparti complet K3,3. Une clique d'un graphe non orienté est, en théorie des graphes, un sous-ensemble des sommets de ce graphe dont le sous-graphe induit est complet, c'est-à-dire que deux sommets quelconques de la clique sont toujours adjacents. Une clique maximum d'un graphe est une clique dont le cardinal est le plus grand (c'est-à-dire qu'elle possède le plus grand nombre de sommets).
Cycle (théorie des graphes)
thumb|Dans ce graphe, le cycle rouge est élémentaire. Le cycle bleu ne l'est pas. La chaine verte n'est pas fermée et ne forme donc pas un cycle. Dans un graphe non orienté, un cycle est une suite d'arêtes consécutives distinctes (chaine simple) dont les deux sommets extrémités sont identiques. Dans les graphes orientés, la notion équivalente est celle de circuit, même si on parle parfois aussi de cycle (par exemple dans l'expression graphe acyclique orienté).
Line graph
En théorie des graphes, le line graph L(G) d'un graphe non orienté G, est un graphe qui représente la relation d'adjacence entre les arêtes de G. Le nom line graph vient d'un article de Harary et Norman publié en 1960. La même construction avait cependant déjà été utilisée par Whitney en 1932 et Krausz en 1943. Il est également appelé graphe adjoint. Un des premiers et des plus importants théorèmes sur les line graphs est énoncé par Hassler Whitney en 1932, qui prouve qu'en dehors d'un unique cas exceptionnel, la structure de G peut être entièrement retrouvée à partir de L(G) dans le cas des graphes connexes.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.