SmoothnessIn mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives it has over some domain, called differentiability class. At the very minimum, a function could be considered smooth if it is differentiable everywhere (hence continuous). At the other end, it might also possess derivatives of all orders in its domain, in which case it is said to be infinitely differentiable and referred to as a C-infinity function (or function).
Support de fonctionLe support d'une fonction ou d'une application est la partie de son ensemble de définition sur laquelle se concentre l'information utile de cette fonction. Pour une fonction numérique, c'est la partie du domaine où elle n'est pas nulle et pour un homéomorphisme ou une permutation, la partie du domaine où elle n'est pas invariante. Soit une fonction à valeurs complexes, définie sur un espace topologique . Définition : On appelle support de , noté , l'adhérence de l'ensemble des points en lesquels la fonction ne s'annule pas.
Variété différentielleEn mathématiques, les variétés différentielles ou variétés différentiables sont les objets de base de la topologie différentielle et de la géométrie différentielle. Il s'agit de variétés, « espaces courbes » localement modelés sur l'espace euclidien de dimension n, sur lesquelles il est possible de généraliser une bonne part des opérations du calcul différentiel et intégral. Une variété différentielle se définit donc d'abord par la donnée d'une variété topologique, espace topologique localement homéomorphe à l'espace R.
Faisceau (mathématiques)En mathématiques, un faisceau est un outil permettant de suivre systématiquement des données définies localement et rattachées aux ouverts d'un espace topologique. Les données peuvent être restreintes à des ouverts plus petits, et les données correspondantes à un ouvert sont équivalentes à l'ensemble des données compatibles correspondantes aux ouverts plus petits couvrant l'ouvert d'origine. Par exemple, de telles données peuvent consister en des anneaux de fonctions réelles continues ou lisses définies sur chaque ouvert.
Distribution (mathématiques)En analyse mathématique, une distribution (également appelée fonction généralisée) est un objet qui généralise la notion de fonction et de mesure. La théorie des distributions étend la notion de dérivée à toutes les fonctions localement intégrables et au-delà, et est utilisée pour formuler des solutions à certaines équations aux dérivées partielles. Elles sont importantes en physique et en ingénierie où beaucoup de problèmes discontinus conduisent naturellement à des équations différentielles dont les solutions sont des distributions plutôt que des fonctions ordinaires.
Variété riemannienneEn mathématiques, et plus précisément en géométrie, la variété riemannienne est l'objet de base étudié en géométrie riemannienne. Il s'agit d'une variété, c'est-à-dire un espace courbe généralisant les courbes (de dimension 1) ou les surfaces (de dimension 2) à une dimension n quelconque, et sur laquelle il est possible d'effectuer des calculs de longueur. En termes techniques, une variété riemannienne est une variété différentielle munie d'une structure supplémentaire appelée métrique riemannienne permettant de calculer le produit scalaire de deux vecteurs tangents à la variété en un même point.
Fonction C∞ à support compactEn mathématiques, une fonction C à support compact (également appelée fonction test) est une fonction infiniment dérivable dont le support est compact. Ces fonctions sont au cœur de la théorie des distributions, puisque ces dernières sont construites comme éléments du dual topologique de l'espace des fonctions tests. Les fonctions C à support compact sont également utilisées pour construire des suites régularisantes et des partitions de l'unité de classe C.
Espace paracompactUn espace topologique est dit paracompact s'il est séparé et si tout recouvrement ouvert admet un raffinement (ouvert) localement fini. Cette définition a été introduite par le mathématicien français Jean Dieudonné en 1944. On rappelle qu'un recouvrement (X) d'un espace topologique X est dit localement fini si tout point de X possède un voisinage disjoint de presque tous les X, de tous sauf pour un ensemble fini d'indices i.