vignette|Vue en coupe d'un transistor MOS On appelle CMOS, ou Complementary Metal Oxide Semiconductor, une technologie de fabrication de composants électroniques et, par extension, les composants fabriqués selon cette technologie. Ce sont pour la plupart des circuits logiques (NAND, NOR) comme ceux de la famille Transistor-Transistor logic (TTL) mais, à la différence de ces derniers, ils peuvent être aussi utilisés comme résistance variable. Dans ces circuits, un étage de sortie est composé d'un couple de transistors MOSFET N et P placés de manière symétrique et réalisant chacun la même fonction. Du fait de leur caractéristique de fonctionnement inversée, un transistor est passant alors que l'autre est bloquant (ils sont donc complémentaires, d'où l'appellation complementary). Pour expliquer le fonctionnement, on peut prendre par exemple le circuit le plus simple existant, l'inverseur CMOS (fonction NON), composé de deux transistors, un N et un P. La table de vérité de l'inverseur est la suivante : Si on applique à l'entrée un niveau haut, le transistor N est passant et le P est bloqué. On place ainsi la sortie au potentiel Vss (la masse), c'est-à-dire à l'état bas. Inversement, quand on met l'entrée à l'état bas, le transistor P est passant et le N est bloqué. La sortie est donc à l'état haut. On a donc bien réalisé une fonction inversion. En fonctionnement normal, il n'y a aucun chemin entre Vdd (l'alimentation positive) et Vss (la masse) ; la consommation électrique est donc nulle en régime établi. Cependant, durant les transitions entre états (passage du niveau haut au niveau bas et inversement), les deux transistors sont simultanément conducteurs pendant un court laps de temps, ce qui entraîne une consommation d'énergie. C'est pour cela que plus la fréquence de l'horloge d'un circuit intégré CMOS est élevée, plus ce circuit consomme d'énergie. De la même manière, à une fréquence donnée, plus un circuit intégré CMOS comporte de transistors, plus il consomme d'énergie.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (57)
Intégration à très grande échelle
L'intégration à très grande échelle (ou VLSI pour Very-Large-Scale Integration en anglais) est une technologie de circuit intégré (CI) dont la densité d'intégration permet de supporter plus de 100 000 composants électroniques sur une même puce. Elle a été réalisée pour la première fois dans les années 1980, dans le cadre du développement des technologies des semi-conducteurs et des communications. Les premières puces à semi-conducteurs supportaient un seul transistor chacune.
Composant semi-conducteur
vignette|Aperçu de quelques dispositifs semi-conducteurs encapsulés Un composant semi-conducteur est un composant électronique dont le fonctionnement repose sur les propriétés électroniques d'un matériau semi-conducteur (principalement le silicium, le germanium et l'arséniure de gallium, ainsi que des semi-conducteurs organiques). Sa conductivité se situe entre les conducteurs et les isolants. Les composants semi-conducteurs ont remplacé les tubes à vide dans la plupart des applications.
Transistor à effet de champ
Un transistor à effet de champ (en anglais, Field-effect transistor ou FET) est un dispositif semi-conducteur de la famille des transistors. Sa particularité est d'utiliser un champ électrique pour contrôler la forme et donc la conductivité d'un « canal » dans un matériau semiconducteur. Il concurrence le transistor bipolaire dans de nombreux domaines d'applications, tels que l'électronique numérique. Le premier brevet sur le transistor à effet de champ a été déposé en 1925 par Julius E. Lilienfeld.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.