Horizon des événementsL'horizon des événements est, en relativité restreinte et en relativité générale, constitué par la limite éventuelle de la région qui peut être influencée dans le futur par un observateur situé en un endroit donné à une époque donnée. Dans le cas d'un trou noir, en particulier, on peut définir son horizon des événements comme une surface qui l'entoure, d'où aucun objet, ni même un rayon de lumière ne peut jamais échapper au champ gravitationnel du trou noir.
Paradoxe des jumeauxvignette|redresse=1.3|Paradoxe des jumeaux : histoire vue du jumeau fixe. vignette|redresse=1.3|Paradoxe des jumeaux : histoire vue du jumeau voyageur. Qui a raison? En physique, le paradoxe des jumeaux ou paradoxe des horloges (Clock paradox) est un paradoxe issu d'une expérience de pensée qui semblait montrer que la relativité restreinte était contradictoire. Des jumeaux sont nés sur Terre. L'un fait un voyage aller-retour dans l'espace en fusée à une vitesse proche de celle de la lumière.
Barycentric Coordinate TimeBarycentric Coordinate Time (TCB, from the French Temps-coordonnée barycentrique) is a coordinate time standard intended to be used as the independent variable of time for all calculations pertaining to orbits of planets, asteroids, comets, and interplanetary spacecraft in the Solar System. It is equivalent to the proper time experienced by a clock at rest in a coordinate frame co-moving with the barycenter (center of mass) of the Solar System: that is, a clock that performs exactly the same movements as the Solar System but is outside the system's gravity well.
Ligne d'universEn physique, la ligne d'univers d'un objet est le tracé d'un objet lorsqu'il voyage à travers l'espace-temps en 4 dimensions. Le concept de ligne d'univers se distingue du concept de l'« orbite » ou de la « trajectoire » (tel que l'orbite d'un corps dans l'espace ou la trajectoire d'un camion sur une route) par la dimension temporelle. L'idée des lignes d'univers trouve son origine dans la physique et Einstein en fut le pionnier. Le terme est maintenant utilisé le plus souvent dans les théories de la relativité (générale ou restreinte, par exemple).
Métrique de SchwarzschildEn astrophysique, dans le cadre de la relativité générale, la métrique de Schwarzschild est une solution des équations d'Einstein. L'espace-temps, dont la métrique décrit la géométrie, a quatre dimensions ; il est vide mais courbe bien qu'asymptotiquement plat ; il est à symétrie sphérique et stationnaire ; il est statique à l'extérieur d'un rayon critique : le rayon de Schwarzschild ; et, lorsque le vide s'étend au-delà de ce rayon, la métrique met en évidence un trou noir : le trou noir de Schwarzschild .
Rapidité (relativité)En relativité restreinte, la rapidité ou pseudo-vitesse est une mesure du mouvement. À faible vitesse, la rapidité et la vitesse sont égales (au coefficient multiplicateur c près), mais contrairement à la vitesse qui tend asymptotiquement vers la vitesse de la lumière, la rapidité continue à augmenter linéairement à l'infini. L'intérêt de la rapidité vient du fait que, de par son caractère linéaire, elle préserve la relation de la mécanique classique entre vitesse et accélération (un voyageur peut donc calculer sa rapidité en intégrant dans le temps, une mesure fournie par un accéléromètre).
Coordinate timeIn the theory of relativity, it is convenient to express results in terms of a spacetime coordinate system relative to an implied observer. In many (but not all) coordinate systems, an event is specified by one time coordinate and three spatial coordinates. The time specified by the time coordinate is referred to as coordinate time to distinguish it from proper time.
Longueur propreEn relativité restreinte, la longueur propre d'un corps est sa longueur mesurée dans un référentiel inertiel où il est immobile. Du fait de la contraction des longueurs, c'est la plus grande mesure que l'on puisse faire de ce corps dans un référentiel. La longueur propre ou longueur au repos d'un corps correspond à la longueur mesurée par un observateur inertiel au repos par rapport à ce corps, au moyen d'une règle ordinaire.
Kerr metricThe Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon. The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find. The Kerr metric is a generalization to a rotating body of the Schwarzschild metric, discovered by Karl Schwarzschild in 1915, which described the geometry of spacetime around an uncharged, spherically symmetric, and non-rotating body.
Invariance de LorentzL' est la propriété d'une quantité physique d'être inchangée par transformation de Lorentz. Il s'agit de quantités physiques qui, lorsqu'elles sont exprimées de manière tensorielle, sont des scalaires ou pseudoscalaires. L' est une des trois hypothèses composant le principe d'équivalence d'Einstein. Dans les cadres de la relativité restreinte et donc de la relativité générale, une quantité est dite invariante de Lorentz, scalaire de Lorentz ou encore invariante relativiste, lorsqu'elle n'est pas modifiée sous l'application d'une transformation de Lorentz.