Théorème de Lagrange sur les groupesvignette|Si G est le groupe des entiers modulo 8, alors {0, 4} forme un sous-groupe H. Sur l'exemple, {0, 4} contient 2 éléments et 2 divise 8. En mathématiques, le théorème de Lagrange sur les groupes énonce un résultat élémentaire fournissant des informations combinatoires sur les groupes finis. Le théorème doit son nom au mathématicien Joseph-Louis Lagrange. Il est parfois nommé théorème d'Euler-Lagrange car il généralise un théorème d'Euler sur les entiers.
Graphe des cyclesEn mathématiques, et plus particulièrement en théorie des groupes, le graphe des cycles d'un groupe représente l'ensemble des cycles de ce groupe, ce qui est particulièrement utile pour visualiser la structure des petits groupes finis. Pour les groupes ayant moins de 16 éléments, le graphe des cycles détermine le groupe à isomorphisme près. Un cycle est l'ensemble des puissances d'un élément donné du groupe ; a, la n-ième puissance de l'élément a, est définie comme le produit de a par lui-même n fois (avec les conventions a = a et a = e, l'élément neutre du groupe).
Permutation circulaireEn mathématiques, une permutation circulaire ou cycle est un cas particulier de permutation. Une permutation circulaire agit comme un décalage circulaire pour un certain nombre d'éléments, et laisse tous les autres inchangés. Les permutations circulaires permettent d'illustrer le fonctionnement général des permutations, puisqu'une permutation quelconque se décompose en un produit de cycles fonctionnant de manière indépendante. Soit un entier k ≥ 2. Une permutation est un k-cycle, ou permutation circulaire de longueur k, s'il existe des éléments a1, .
Covering groups of the alternating and symmetric groupsIn the mathematical area of group theory, the covering groups of the alternating and symmetric groups are groups that are used to understand the projective representations of the alternating and symmetric groups. The covering groups were classified in : for n ≥ 4, the covering groups are 2-fold covers except for the alternating groups of degree 6 and 7 where the covers are 6-fold. For example the binary icosahedral group covers the icosahedral group, an alternating group of degree 5, and the binary tetrahedral group covers the tetrahedral group, an alternating group of degree 4.