Ricci calculusIn mathematics, Ricci calculus constitutes the rules of index notation and manipulation for tensors and tensor fields on a differentiable manifold, with or without a metric tensor or connection. It is also the modern name for what used to be called the absolute differential calculus (the foundation of tensor calculus), developed by Gregorio Ricci-Curbastro in 1887–1896, and subsequently popularized in a paper written with his pupil Tullio Levi-Civita in 1900.
Connexion affineEn mathématiques, et plus précisément en géométrie différentielle, une connexion affine est un objet géométrique défini sur une variété différentielle, qui connecte des espaces tangents voisins, et permet ainsi à des champs de vecteurs tangents d'être dérivés comme si c'étaient des fonctions définies sur la variété et prenant leurs valeurs dans un unique espace vectoriel.
Système de coordonnées curvilignesUn système de coordonnées curvilignes est une façon d'attribuer à chaque point du plan ou de l'espace un ensemble de nombres. Soit un point de l'espace dont les coordonnées sont notées . Un système de coordonnées quelconques est obtenu en se donnant trois fonctions arbitraires des paramètres , telles que ; ces fonctions sont choisies le plus souvent continues, et même différentiables. Les points correspondant à deux des trois coordonnées constantes décrivent une ligne de coordonnées.
Marcel GrossmannMarcel Grossmann ( à Budapest, Autriche-Hongrie - à Zurich, Suisse) est un mathématicien suisse (fils d'un père suisse établi en Autriche-Hongrie). Il est surtout connu pour avoir aidé Albert Einstein à construire la théorie de la relativité générale. Après avoir obtenu son doctorat en géométrie descriptive à l'Institut polytechnique de Zurich, devenu aujourd'hui École polytechnique fédérale de Zurich, il y devient professeur de mathématiques. En 1910, il cofonde la Société mathématique suisse dont il sera président en 1916-1917.
Gregorio Ricci-CurbastroGregorio Ricci-Curbastro (né le à Lugo, dans la province de Ravenne, en Émilie-Romagne et mort le à Bologne) est un mathématicien italien de la fin du et du début du . Spécialiste de la géométrie différentielle, il est l'un des pères du calcul tensoriel. Ricci-Curbastro étudia dès l'âge de seize ans la philosophie et les mathématiques à l'Université de Rome, publiant même un article sur les « Recherches de Fuchs sur les équations différentielles linéaires » ; après une période d'interruption, il les poursuivit à l’Université de Bologne (1872) et l’École normale supérieure de Pise dont il sortit diplômé (1875).
Algèbre multilinéaireEn mathématiques, l’algèbre multilinéaire étend les méthodes de l’algèbre linéaire. Tout comme l’algèbre linéaire est bâtie sur le concept de vecteur et développe la théorie des espaces vectoriels, l’algèbre multilinéaire est bâtie sur le concept de tenseur et développe la théorie des espaces tensoriels. Dans les applications, de nombreux types de tenseurs surviennent. La théorie se veut exhaustive et comprend l'étude d'un certain nombre d'espaces et l'exposé de leurs relations.
Champ (physique)En physique, un champ est la donnée, pour chaque point de l'espace-temps, de la valeur d'une grandeur physique. Cette grandeur physique peut être scalaire (température, pression...), vectorielle (vitesse des particules d'un fluide, champ électrique...) ou tensorielle (comme le tenseur de Ricci en relativité générale). Un exemple de champ scalaire est donné par la carte des températures d'un bulletin météorologique télévisé : la température atmosphérique prend, en chaque point, une valeur particulière.
Elwin Bruno ChristoffelElwin Bruno Christoffel (1829-1900) est un mathématicien et physicien allemand. Il étudie à l'université Humboldt de Berlin, notamment avec Dirichlet. Il soutient une thèse sur la propagation de l'électricité dans les corps homogènes en 1856. En 1859, Christoffel devient Privat-docent à l'université de Berlin. En 1862, il est nommé à l'École polytechnique fédérale de Zurich où il occupe la chaire laissée vacante par le départ de Dedekind.
Champ tensorielEn mathématiques, en physique et en ingénierie, un champ tensoriel est un concept très général de quantité géométrique variable. Il est utilisé en géométrie différentielle et dans la théorie des variétés, en géométrie algébrique, en relativité générale, dans l'analyse des contraintes et de la déformation dans les matériaux, et en de nombreuses applications dans les sciences physiques et dans le génie. C'est une généralisation de l'idée de champ vectoriel, lui-même conçu comme un « vecteur qui varie de point en point », à celle, plus riche, de « tenseur qui varie de point en point ».
Analyse vectorielleL'analyse vectorielle est une branche des mathématiques qui étudie les champs de scalaires et de vecteurs suffisamment réguliers des espaces euclidiens, c'est-à-dire les applications différentiables d'un ouvert d'un espace euclidien à valeurs respectivement dans et dans . Du point de vue du mathématicien, l'analyse vectorielle est donc une branche de la géométrie différentielle. Cette dernière inclut l'analyse tensorielle qui apporte des outils plus puissants et une analyse plus concise entre autres des champs de vecteurs.