Résumé
En mathématiques, en physique et en ingénierie, un champ tensoriel est un concept très général de quantité géométrique variable. Il est utilisé en géométrie différentielle et dans la théorie des variétés, en géométrie algébrique, en relativité générale, dans l'analyse des contraintes et de la déformation dans les matériaux, et en de nombreuses applications dans les sciences physiques et dans le génie. C'est une généralisation de l'idée de champ vectoriel, lui-même conçu comme un « vecteur qui varie de point en point », à celle, plus riche, de « tenseur qui varie de point en point ». Il devrait être noté que plusieurs structures mathématiques appelées familièrement « tenseurs » sont en fait des champs tensoriels, qui associent un tenseur à chaque point du domaine. Voir l'article tenseur pour une introduction élémentaire aux tenseurs. On retrouvera dans les champs de tenseurs les notions de degré de covariance ou de contravariance qui indiquent la façon dont le tenseur se comporte lors d'un changement de base. L'intuition géométrique pour un champ vectoriel est d'une « flèche attachée à chaque point de la région », à longueur et direction variables. L'image mentale d'un champ vectoriel sur un espace courbe peut s'appuyer sur l'exemple d'une carte météorologique montrant la vélocité horizontale du vent, à chaque point de la surface de la Terre. La notion générale du champ tensoriel est définie sur les variétés, espaces courbes de dimension quelconque généralisant les surfaces. Il s'agit à la fois un objet au contenu sophistiqué - il permet par exemple de donner corps à l'idée d'une ellipse ou d'un produit scalaire non pas fixes mais variables et attachés au point courant - et d'une quantité qui est définie de façon intrinsèque, indépendamment notamment du paramétrage ou des choix de coordonnées utilisés pour décrire le domaine de définition. Dans l'exemple du globe terrestre, le champ peut s'exprimer en recourant à la latitude et la longitude, ou à différents types de projection cartographique, mais doit cependant pouvoir être défini indépendamment de ces outils de calcul.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.