In mathematics, computer science and digital electronics, a dependency graph is a directed graph representing dependencies of several objects towards each other. It is possible to derive an evaluation order or the absence of an evaluation order that respects the given dependencies from the dependency graph.
Given a set of objects and a transitive relation with modeling a dependency "a depends on b" ("a needs b evaluated first"), the dependency graph is a graph with the transitive reduction of R.
For example, assume a simple calculator. This calculator supports assignment of constant values to variables and assigning the sum of exactly two variables to a third variable. Given several equations like "A = B+C; B = 5+D; C=4; D=2;", then and . You can derive this relation directly: A depends on B and C, because you can add two variables if and only if you know the values of both variables. Thus, B must be calculated before A can be calculated. However, the values of C and D are known immediately, because they are number literals.
In a dependency graph, the cycles of dependencies (also called circular dependencies) lead to a situation in which no valid evaluation order exists, because none of the objects in the cycle may be evaluated first. If a dependency graph does not have any circular dependencies, it forms a directed acyclic graph, and an evaluation order may be found by topological sorting. Most topological sorting algorithms are also capable of detecting cycles in their inputs; however, it may be desirable to perform cycle detection separately from topological sorting in order to provide appropriate handling for the detected cycles.
Assume the simple calculator from before. The equation system "A=B; B=D+C; C=D+A; D=12;" contains a circular dependency formed by A, B and C, as B must be evaluated before A, C must be evaluated before B, and A must be evaluated before C.
A correct evaluation order is a numbering of the objects that form the nodes of the dependency graph so that the following equation holds: with .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En théorie des graphes, et plus spécialement en algorithmique des graphes, un tri topologique d'un graphe acyclique orienté (ou dag, de l'anglais directed acyclic graph) est un ordre total sur l'ensemble des sommets, dans lequel s précède t pour tout arc d'un sommet s à un sommet t. En d'autres termes, un tri topologique est une extension linéaire de l'ordre partiel sur les sommets déterminés par les arcs. Soit un graphe orienté avec et . Un ordre topologique sur ce graphe peut donner par exemple la succession des sommets 7, 1, 2, 9, 8, 4, 3, 5, 6.
En théorie des graphes, un graphe orienté acyclique (en anglais directed acyclic graph ou DAG), est un graphe orienté qui ne possède pas de circuit. Un tel graphe peut être vu comme une hiérarchie. Un graphe orienté acyclique est un graphe orienté qui ne possède pas de circuit. On peut toujours trouver un sous-graphe couvrant d’un graphe orienté acyclique qui soit un arbre (resp. une forêt). Dans un graphe orienté acyclique, la relation d'accessibilité R(u, v) définie par « il existe un chemin de u à v » est une relation d'ordre partielle.
The students learn the theory and practice of basic concepts and techniques in algorithms. The course covers mathematical induction, techniques for analyzing algorithms, elementary data structures, ma
In this course we will define rigorous mathematical models for computing on large datasets, cover main algorithmic techniques that have been developed for sublinear (e.g. faster than linear time) data
We develop a sophisticated framework for solving problems in discrete mathematics through the use of randomness (i.e., coin flipping). This includes constructing mathematical structures with unexpecte
Explorer l'optimisation de la correspondance graphique avec les techniques de partage de travail et la parallélisation contextuelle pour l'extraction de motifs à l'échelle.
Natural language processing has experienced significant improvements with the development of Transformer-based models, which employ self-attention mechanism and pre-training strategies. However, these models still present several obstacles. A notable issue ...
Unsupervised graph representation learning aims to learn low-dimensional node embeddings without supervision while preserving graph topological structures and node attributive features. Previous Graph Neural Networks (GNN) require a large number of labeled ...
New York2023
,
JavaBIP allows the coordination of software components by clearly separating the functional and coordination aspects of the system behavior. JavaBIP implements the principles of the BIP component framework rooted in rigorous operational semantics. Recent w ...