In algebra, an absolute value (also called a valuation, magnitude, or norm, although "norm" usually refers to a specific kind of absolute value on a field) is a function which measures the "size" of elements in a field or integral domain. More precisely, if D is an integral domain, then an absolute value is any mapping |x| from D to the real numbers R satisfying:
It follows from these axioms that |1| = 1 and |-1| = 1. Furthermore, for every positive integer n,
|n| = |1 + 1 + ... + 1 (n times)| = |−1 − 1 − ... − 1 (n times)| ≤ n.
The classical "absolute value" is one in which, for example, |2|=2, but many other functions fulfill the requirements stated above, for instance the square root of the classical absolute value (but not the square thereof).
An absolute value induces a metric (and thus a topology) by
The standard absolute value on the integers.
The standard absolute value on the complex numbers.
The p-adic absolute value on the rational numbers.
If R is the field of rational functions over a field F and is a fixed irreducible element of R, then the following defines an absolute value on R: for in R define to be , where and
The trivial absolute value is the absolute value with |x|=0 when x=0 and |x|=1 otherwise. Every integral domain can carry at least the trivial absolute value. The trivial value is the only possible absolute value on a finite field because any non-zero element can be raised to some power to yield 1.
If an absolute value satisfies the stronger property |x + y| ≤ max(|x|, |y|) for all x and y, then |x| is called an ultrametric or non-Archimedean absolute value, and otherwise an Archimedean absolute value.
If |x|1 and |x|2 are two absolute values on the same integral domain D, then the two absolute values are equivalent if |x|1 < 1 if and only if |x|2 < 1 for all x. If two nontrivial absolute values are equivalent, then for some exponent e we have |x|1e = |x|2 for all x. Raising an absolute value to a power less than 1 results in another absolute value, but raising to a power greater than 1 does not necessarily result in an absolute value.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, un corps de nombres algébriques (ou simplement corps de nombres) est une extension finie K du corps Q des nombres rationnels. En particulier, c'est une extension algébrique : tous les éléments de K sont des nombres algébriques, dont le degré divise le degré de l'extension. C'est aussi une extension séparable car Q est de caractéristique nulle donc parfait. Tout sous-corps de C engendré par un nombre fini de nombres algébriques est un corps de nombres.
En mathématiques, le théorème d'Ostrowski est un théorème de théorie des nombres démontré en 1916 par Alexander Ostrowski, d'après lequel toute valeur absolue non triviale sur le corps Q des rationnels est équivalente soit à la valeur absolue usuelle, soit à l'une des valeurs absolues p-adiques. Plus précisément et plus généralement, le théorème d'Ostrowski énonce que les seules valeurs absolues non ultramétriques sur un corps K sont (s'il en existe) les applications de la forme x ↦ |f(x)|, où f est un plongement de K dans le corps des complexes, et 0 < c ≤ 1.
En mathématiques, plus particulièrement en géométrie algébrique et en théorie des nombres, une valuation, ou valuation de Krull, est une mesure de la multiplicité. La notion est une généralisation de la notion de degré ou d'ordre d'annulation d'un polynôme formel en algèbre, du degré de divisibilité par un nombre premier en théorie des nombres, de l'ordre d'un pôle en analyse complexe ou du nombre de points de contact entre deux variétés algébriques en géométrie algébrique.
This year's topic is "Adelic Number Theory" or how the language of adeles and ideles and harmonic analysis on the corresponding spaces can be used to revisit classical questions in algebraic number th
P-adic numbers are a number theoretic analogue of the real numbers, which interpolate between arithmetics, analysis and geometry. In this course we study their basic properties and give various applic
Introduit des nombres complexes et leurs formes, y compris des formes cartésiennes, polaires et exponentielles, et explique comment trouver l'argument d'un nombre complexe.
We consider integer programming problems in standard form max{c(T)x : Ax = b, x >= 0, x is an element of Z(n)} where A is an element of Z(mxn), b is an element of Z(m), and c is an element of Z(n). We show that such an integer program can be solved in time ...
ASSOC COMPUTING MACHINERY2020
, ,
We define p-adic BPS or pBPS invariants for moduli spaces M-beta,M-chi of one-dimensional sheaves on del Pezzo and K3 surfaces by means of integration over a non-archimedean local field F. Our definition relies on a canonical measure mu can on the F-analyt ...
It is proved that the continuous bounded cohomology of SL2(k) vanishes in all positive degrees whenever k is a non-Archimedean local field. This holds more generally for boundary-transitive groups of tree automorphisms and implies low degree vanishing for ...