Séances de cours associées (33)
Reconnaissance d'images : jeux de données et algorithmes
Explore un article de 2019 sur la reconnaissance d'images, les défis liés aux ensembles de données, les biais et l'impact des ensembles de données à grande échelle sur les modèles d'apprentissage en profondeur.
Réseaux convolutifs modernes et reconnaissance d'image
Explore l'évolution des réseaux convolutifs profonds et leur impact sur la précision de la reconnaissance d'images.
Apprentissage automatique avancé : sélection des fonctionnalités
Explore les algorithmes d'apprentissage automatique, les techniques de sélection des fonctionnalités telles que les descripteurs FAST et BRIEF, et les limites de l'apprentissage profond.
Les systèmes d’image sociale : du passé au présent
Explore l'évolution des systèmes d'image sociale, des modèles d'apprentissage en profondeur, des selfies et de la biométrie sur les plateformes en ligne.
Apprentissage profond pour les véhicules autonomes: Apprentissage
Explore l'apprentissage en apprentissage profond pour les véhicules autonomes, couvrant les modèles prédictifs, RNN, ImageNet, et l'apprentissage de transfert.
Segmentation : Techniques et applications
Explore les techniques de segmentation, y compris les modèles CNN et U-Net, pour la reconnaissance et l'analyse d'images, en mettant l'accent sur les méthodes automatisées qui permettent de gagner du temps.
Réseaux neuronaux : apprentissage multicouche
Couvre les fondamentaux des réseaux neuronaux multicouches et de l'apprentissage profond, y compris la propagation arrière et les architectures réseau comme LeNet, AlexNet et VGG-16.
Réseaux neuronaux convolutionnels
Introduit des réseaux neuronaux convolutionnels (RCN) pour les véhicules autonomes, couvrant l'architecture, les applications et les techniques de régularisation.
Réseaux convolutifs : vue d'ensemble et architecture
Couvre la motivation et l'architecture des réseaux convolutifs, de LeNet à AlexNet.
Deep Learning : réseaux neuronaux convolutifs
Couvre les réseaux neuronaux convolutifs, les architectures standard, les techniques de formation et les exemples contradictoires en apprentissage profond.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.