NOTOC In linear algebra, a square matrix with complex entries is said to be skew-Hermitian or anti-Hermitian if its conjugate transpose is the negative of the original matrix. That is, the matrix is skew-Hermitian if it satisfies the relation where denotes the conjugate transpose of the matrix . In component form, this means that for all indices and , where is the element in the -th row and -th column of , and the overline denotes complex conjugation. Skew-Hermitian matrices can be understood as the complex versions of real skew-symmetric matrices, or as the matrix analogue of the purely imaginary numbers. The set of all skew-Hermitian matrices forms the Lie algebra, which corresponds to the Lie group U(n). The concept can be generalized to include linear transformations of any complex vector space with a sesquilinear norm. Note that the adjoint of an operator depends on the scalar product considered on the dimensional complex or real space . If denotes the scalar product on , then saying is skew-adjoint means that for all one has . Imaginary numbers can be thought of as skew-adjoint (since they are like matrices), whereas real numbers correspond to self-adjoint operators. For example, the following matrix is skew-Hermitian because The eigenvalues of a skew-Hermitian matrix are all purely imaginary (and possibly zero). Furthermore, skew-Hermitian matrices are normal. Hence they are diagonalizable and their eigenvectors for distinct eigenvalues must be orthogonal. All entries on the main diagonal of a skew-Hermitian matrix have to be pure imaginary; i.e., on the imaginary axis (the number zero is also considered purely imaginary). If and are skew-Hermitian, then aA + bB is skew-Hermitian for all real scalars and . is skew-Hermitian if and only if (or equivalently, ) is Hermitian. is skew-Hermitian if and only if the real part is skew-symmetric and the imaginary part is symmetric. If is skew-Hermitian, then is Hermitian if is an even integer and skew-Hermitian if is an odd integer. is skew-Hermitian if and only if for all vectors .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (2)
MATH-115(b): Advanced linear algebra II
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et de démontrer rigoureusement les résultats principaux du sujet.
COM-309: Introduction to quantum information processing
Information is processed in physical devices. In the quantum regime the concept of classical bit is replaced by the quantum bit. We introduce quantum principles, and then quantum communications, key d
Séances de cours associées (24)
Formes ermitiennes : Définition et propriétés
Explore la définition et les propriétés des formes ermitiennes dans des espaces vectoriels complexes.
Principes de la mécanique quantique
Couvre les principes de la mécanique quantique, y compris le principe de mesure et la règle de Max Born.
Opérations matricielles : théorèmes et applications
Couvre les opérations matricielles et les propriétés des matrices, y compris les matrices symétriques et antisymétriques.
Afficher plus
Publications associées (6)
Concepts associés (3)
Exponentielle d'une matrice
En mathématiques, et plus particulièrement en analyse, l'exponentielle d'une matrice est une fonction généralisant la fonction exponentielle aux matrices et aux endomorphismes par le calcul fonctionnel. Elle fait en particulier le pont entre un groupe de Lie et son algèbre de Lie. Pour n = 1, on retrouve la définition de l'exponentielle complexe. Sauf indication contraire, X, Y désignent des matrices n × n complexes (à coefficients complexes).
Groupe unitaire
En mathématiques, le groupe unitaire de degré n sur un corps K relativement à un anti automorphisme involutif (cf. Algèbre involutive) σ de K (par exemple K le corps des nombres complexes et σ la conjugaison) est le groupe des matrices carrées A d'ordre n à coefficients dans K, qui sont unitaires pour σ, c'est-à-dire telles Aσ(tA) = In. Plus généralement, on peut définir le groupe unitaire d'une forme hermitienne ou antihermitienne non dégénérée φ sur un espace vectoriel sur un corps comme étant le groupe des éléments f de GL(E) tels que φ(f(x), f(y)) = φ(x, y) quels que soient les vecteurs x et y de E.
Groupe spécial unitaire
En mathématiques, le groupe spécial unitaire de E, où E est un espace hermitien, est le groupe des automorphismes unitaires de E de déterminant 1, la loi de composition interne considérée étant la composition d’automorphismes. Il est noté SU(E). C’est un sous-groupe de U(E), le groupe unitaire des automorphismes de E. De manière générale, on peut définir le groupe spécial unitaire d'une forme sesquilinéaire hermitienne complexe non dégénérée, ou d'une forme sesquilinéaire hermitienne ou antihermitienne non dégénérée sur un espace vectoriel de dimension finie sur certains corps (commutatifs ou non) relativement à une involution.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.