Résumé
En mathématiques, le groupe spécial unitaire de E, où E est un espace hermitien, est le groupe des automorphismes unitaires de E de déterminant 1, la loi de composition interne considérée étant la composition d’automorphismes. Il est noté SU(E). C’est un sous-groupe de U(E), le groupe unitaire des automorphismes de E. De manière générale, on peut définir le groupe spécial unitaire d'une forme sesquilinéaire hermitienne complexe non dégénérée, ou d'une forme sesquilinéaire hermitienne ou antihermitienne non dégénérée sur un espace vectoriel de dimension finie sur certains corps (commutatifs ou non) relativement à une involution. Un cas particulier est le groupe spécial unitaire de degré n qui est le groupe des matrices unitaires à coefficients complexes de dimensions n×n et de déterminant 1, et que l’on note SU(n). SU(n) est un groupe de Lie réel compact simplement connexe de dimension n – 1. Pour n ≥ 2, c'est un . Son algèbre de Lie, notée , est l'algèbre de Lie réelle des matrices complexes n×n de trace nulle, le commutateur standard servant de crochet de Lie. Le groupe SU(2) est explicitement : Il est difféomorphe à la 3-sphère par l'application suivante : Le difféomorphisme φ transmet la multiplication de SU(2) à S3 : cela donne la multiplication des quaternions. SU(2) est donc isomorphe au groupe des quaternions unitaires. Comme les quaternions représentent les rotations dans l’espace à 3 dimensions, il existe un homomorphisme surjectif de groupes de Lie SU(2) → SO(3) de noyau {+I, –I}. Les matrices suivantes forment une base de : (où i est « l’unité imaginaire ») Les matrices (dites « matrices de Pauli ») sont souvent utilisées en mécanique quantique pour représenter le spin des particules. Le groupe spécial unitaire possède une importance particulière en physique des particules. Si le groupe unitaire U(1) est le groupe de jauge de l’électromagnétisme, SU(2) est le groupe associé à l’interaction faible ainsi qu’au spin et à l’isospin, et SU(3) celui de l’interaction forte (chromodynamique quantique).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.