Mole (unité)La mole (symbole : mol) est une des unités de base du Système international, adoptée en 1971, qui est principalement utilisée en physique et en chimie. La mole est la quantité de matière d'un système contenant exactement élémentaires (atomes, ions, molécules). Ce nombre, appelé « nombre d'Avogadro », correspond à la valeur numérique fixée de la constante d’Avogadro, , lorsqu’elle est exprimée en . Pour donner un ordre de grandeur, le même nombre en grains de maïs permettrait de recouvrir la surface des États-Unis d'une couche uniforme d'une épaisseur d'environ .
Parts-per notationIn science and engineering, the parts-per notation is a set of pseudo-units to describe small values of miscellaneous dimensionless quantities, e.g. mole fraction or mass fraction. Since these fractions are quantity-per-quantity measures, they are pure numbers with no associated units of measurement. Commonly used are parts-per-million (ppm, 10−6), parts-per-billion (ppb, 10−9), parts-per-trillion (ppt, 10−12) and parts-per-quadrillion (ppq, 10−15). This notation is not part of the International System of Units (SI) system and its meaning is ambiguous.
Gaz parfaitLe gaz parfait est un modèle thermodynamique décrivant le comportement des gaz réels à basse pression. Ce modèle a été développé du milieu du au milieu du et formalisé au . Il est fondé sur l'observation expérimentale selon laquelle tous les gaz tendent vers ce comportement à pression suffisamment basse, quelle que soit la nature chimique du gaz, ce qu'exprime la loi d'Avogadro, énoncée en 1811 : la relation entre la pression, le volume et la température est, dans ces conditions, indépendante de la nature du gaz.
Quantité de matièreEn chimie ou en physique, selon le Bureau international des poids et mesures, Il s'agit d'une grandeur physique dont l'unité correspondante dans le Système international d'unités (SI) est la mole. La quantité de matière unitaire est donc « une mole » de la matière considérée, quelle que soit cette matière. L'expression « quantité de matière » n'a été définie qu'en 1969. L'expression « nombre de moles », préexistante, reste correcte et est encore répandue parmi les chimistes.
RadianLe radian (symbole : rad) est l'unité d'angle (plan ou dièdre) du Système international. Par définition, un angle ayant son sommet au centre d'un cercle a une mesure d'un radian s'il intercepte, sur la circonférence de ce cercle, un arc d'une longueur égale à celle du rayon du cercle. Bien que le mot « radian » ait été inventé au cours des années 1870 par Thomas Muir et James Thomson, les mathématiciens mesuraient depuis longtemps les angles en prenant pour unité le rapport entre la circonférence et la longueur du rayon.
Système d'unités naturellesUn système d'unités naturelles, noté SUN, est un système d'unités basé uniquement sur des constantes physiques universelles. Par exemple, la charge élémentaire e est une unité naturelle de charge électrique, et la vitesse de la lumière c est une unité naturelle de vitesse. Un système d'unités purement naturel a toutes ses unités définies de cette façon, ce qui implique que la valeur numérique des constantes physiques sélectionnées, exprimées dans ces unités, vaut exactement 1.
Système d'unitésUn système d'unités est un ensemble d'unités de mesure couramment employées dans des domaines d'activité humaine, présentant des caractères de cohérence qui en facilitent l'usage entre les organisations d'une société humaine. Historiquement, les systèmes d'unités ont été d'une grande importance, soumis à réglementation et définis dans des domaines scientifiques et commerciaux. Depuis que les civilisations se sont développées, les hommes ont cherché à développer des systèmes d'unités cohérents, afin de faciliter les échanges, tant scientifiques, que culturels, économiques, et financiers.
ViscositéLa viscosité (du latin viscum, gui, glu) peut être définie comme l'ensemble des phénomènes de résistance au mouvement d'un fluide pour un écoulement avec ou sans turbulence. La viscosité diminue la liberté d'écoulement du fluide et dissipe son énergie. Deux grandeurs physiques caractérisent la viscosité : la viscosité dynamique (celle utilisée le plus généralement) et la seconde viscosité ou la viscosité de volume. On utilise aussi des grandeurs dérivées : fluidité, viscosité cinématique ou viscosité élongationnelle.
Mécanique des fluidesLa mécanique des fluides est un domaine de la physique consacré à l’étude du comportement des fluides (liquides, gaz et plasmas) et des forces internes associées. C’est une branche de la mécanique des milieux continus qui modélise la matière à l’aide de particules assez petites pour relever de l’analyse mathématique, mais assez grandes par rapport aux molécules pour être décrites par des fonctions continues. Elle comprend deux sous-domaines : la statique des fluides, qui est l’étude des fluides au repos, et la dynamique des fluides, qui est l’étude des fluides en mouvement.
Nombre de ReynoldsEn mécanique des fluides, le , noté , est un nombre sans dimension caractéristique de la transition laminaire-turbulent. Il est mis en évidence en par Osborne Reynolds. Le nombre de Reynold est applicable à tout écoulement de fluide visqueux, et prévoit son régime. Pour des petites valeurs de , le régime est dominé par la viscosité et l'écoulement est laminaire. Pour les grandes valeurs de , le régime est dominé par l'inertie et l'écoulement est turbulent.