Résumé
En mathématiques, le théorème de Vaschy-Buckingham, ou théorème Pi, est un des théorèmes de base de l'analyse dimensionnelle. Ce théorème établit que si une équation physique met en jeu n variables physiques, celles-ci dépendant de k unités fondamentales, alors il existe une équation équivalente mettant en jeu variables sans dimension construites à partir des variables originelles. Bien que nommé d'après les physiciens Aimé Vaschy et Edgar Buckingham, ce théorème a d'abord été démontré par le mathématicien français Joseph Bertrand en 1878. Soient des quantités physiques, dont les premières sont rapportées à des unités fondamentales distinctes et les dernières à des unités dérivées des unités fondamentales (par exemple peut être une longueur, une masse, un temps, et les autres quantités seraient des forces, des vitesses, etc. ; alors ). Si entre ces quantités il existe une relation: qui subsiste quelles que soient les grandeurs arbitraires des unités fondamentales, cette relation peut se ramener à une autre en paramètres au plus, soit : les paramètres étant des fonctions monômes de (c'est-à-dire , avec ). En dynamique des fluides, la plupart des situations dépendent des onze quantités physiques suivantes : Ces onze quantités sont définies à travers trois dimensions, ce qui permet de définir 11-3 = 8 nombres sans dimension indépendants. Les variables qui apparaîtront le plus probablement comme dimensionnantes sont V, ρ, et D, qui seront donc pour cette raison choisies comme nouvelles grandeurs de base. On en déduit les nombres sans dimension qui en dépendent : coefficient de pression nombre de Froude nombre de Reynolds nombre de Weber nombre de Mach nombre de Strouhal rapport longueur/diamètre rugosité relative. Pour démontrer le théorème précédemment énoncé, remarquons que les quantités étant rapportées à des unités dérivées, cela revient à dire que l'on peut trouver des exposants tels que les valeurs numériques des rapports soient indépendantes des valeurs arbitraires des unités fondamentales.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.