Concepts associés (23)
Divisibilité
En arithmétique, on dit qu'un entier a est divisible par un entier b s'il existe un entier k tel que a = bk. On dit alors que a est un multiple de b, et que b divise a ou est un diviseur de a. La relation de divisibilité se note à l'aide d'une barre verticale : b divise a se note b|a et ne doit pas se confondre avec le résultat de la division de a par b noté a/b. La notion de divisibilité, c'est-à-dire la capacité d'être divisible, fonde l'étude de l'arithmétique, mais se généralise aussi à tout anneau commutatif.
Multiplicatively closed set
In abstract algebra, a multiplicatively closed set (or multiplicative set) is a subset S of a ring R such that the following two conditions hold: for all . In other words, S is closed under taking finite products, including the empty product 1. Equivalently, a multiplicative set is a submonoid of the multiplicative monoid of a ring. Multiplicative sets are important especially in commutative algebra, where they are used to build localizations of commutative rings. A subset S of a ring R is called saturated if it is closed under taking divisors: i.
Décomposition primaire
La décomposition primaire est une généralisation de la décomposition d'un nombre entier en facteurs premiers. Cette dernière décomposition, connue depuis Gauss (1832) sous le nom de théorème fondamental de l'arithmétiqueGauss 1832., s'étend naturellement au cas d'un élément d'un anneau principal. Une décomposition plus générale est celle d'un idéal d'un anneau de Dedekind en produit d'idéaux premiers; elle a été obtenue en 1847 par Kummer (dans le formalisme encore peu maniable des « nombres idéaux ») à l'occasion de ses recherches sur le dernier théorème de FermatKummer 1847.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.