Approximation affineEn mathématiques, une approximation affine est une approximation d'une fonction au voisinage d'un point à l'aide d'une fonction affine. Une approximation affine sert principalement à simplifier un problème dont on peut obtenir une solution approchée. Deux façons classiques d'obtenir une approximation affine de fonction passent par l'interpolation ou le développement limité à l’ordre 1.
AdégalitéL’adégalité, dans l'histoire du calcul infinitésimal, est une technique développée par Pierre de Fermat, dont il dit qu'il l'a empruntée à Diophante. L'adégalité a été interprétée par certains chercheurs comme signifiant « l'égalité approximative ». John Stillwell illustre la technique dans le cadre de différentiation de comme suit. Si nous désignons l'adégalité par , alors il est juste de dire que et donc que pour la parabole est adégal à . Cependant, n'est pas un nombre ; en fait, est le seul nombre auquel est adégal.
Fluxion (analyse)thumb|Page de titre de l'ouvrage de Newton The Method of Fluxions and Infinite Series (première édition, 1736). En mathématiques, fluxion est le terme utilisé par le mathématicien et physicien Isaac Newton pour désigner la vitesse à laquelle une quantité variable (appelée fluente) varie au cours du temps. Cette notion est une alternative à celle des infiniment petits proposée par Leibniz pour traiter le calcul différentiel. Si désigne une quantité variable, Newton désigne par sa fluxion.
Traité de la MéthodeLe Traité de la Méthode, ou plus simplement la Méthode est un traité de l'ingénieur et scientifique grec antique Archimède. La lecture de ce traité dont le titre original est La Méthode relative aux théorèmes mécaniques, nous aide à comprendre comment Archimède a partagé ses méthodes de travail avec la communauté scientifique de son époque.
Integral symbolThe integral symbol: is used to denote integrals and antiderivatives in mathematics, especially in calculus. Leibniz's notation The notation was introduced by the German mathematician Gottfried Wilhelm Leibniz in 1675 in his private writings; it first appeared publicly in the article "De Geometria Recondita et analysi indivisibilium atque infinitorum" (On a hidden geometry and analysis of indivisibles and infinites), published in Acta Eruditorum in June 1686.
Bonaventura CavalieriBonaventura Francesco Cavalieri (en latin, Cavalerius) (né en 1598 à Milan et mort le à Bologne) est un mathématicien, géomètre, astronome et universitaire italien du connu pour le principe de Cavalieri. Il est membre de l'ordre des jésuates. Né dans le duché de Milan, Bonaventura Cavalieri étudie la théologie au monastère de San Gerolamo et la géométrie à l'université de Pise. Il publie onze livres dont le premier, en 1632. Il travaille sur les problèmes du système optique et du mouvement.
Colin MaclaurinColin Maclaurin (Kilmodan (Argyll and Bute), février 1698 - Édimbourg ) est un mathématicien écossais. Il fut professeur de mathématiques au Marischal College à Aberdeen de 1717 à 1725 et à l'université d'Édimbourg de 1725 à 1745. Il fit des travaux remarquables en géométrie, plus précisément dans l'étude de courbes planes. Il écrivit un important mémoire sur la théorie des marées. Maclaurin fut élu membre de la Royal Society en 1719 et, en 1724, il reçut un Grand prix de l'Académie royale des sciences pour son travail sur le choc des corps.
Quotient ruleIn calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let , where both f and g are differentiable and The quotient rule states that the derivative of h(x) is It is provable in many ways by using other derivative rules. Given , let , then using the quotient rule: The quotient rule can be used to find the derivative of as follows: Reciprocal rule The reciprocal rule is a special case of the quotient rule in which the numerator .
Differentiation rulesThis is a summary of differentiation rules, that is, rules for computing the derivative of a function in calculus. Unless otherwise stated, all functions are functions of real numbers (R) that return real values; although more generally, the formulae below apply wherever they are well defined — including the case of complex numbers (C). For any value of , where , if is the constant function given by , then . Let and . By the definition of the derivative, This shows that the derivative of any constant function is 0.
Mathématiques dans l'Égypte antiqueLes mathématiques en Égypte antique étaient fondées sur un système décimal. Chaque puissance de dix était représentée par un hiéroglyphe particulier. Le zéro était inconnu. Toutes les opérations étaient ramenées à des additions. Pour exprimer des valeurs inférieures à leur étalon, les Égyptiens utilisaient un système simple de fractions unitaires. Pour déterminer la longueur d'un champ, sa surface ou encore mesurer un butin, les Égyptiens utilisaient trois systèmes de mesure différents, mais tous obéissaient aux règles décrites ci-dessus.