La Quadrature de la parabole (Archimède)thumb|Archimède inscrit un triangle particulier dans le segment de parabole. L'aire du segment de parabole est égale aux 4/3 de l'aire de ce triangle. La Quadrature de la parabole est un traité de géométrie écrit par Archimède au , sous la forme d'une lettre à son ami Dosithée (Dositheus). Cette œuvre énonce 24 propositions sur les paraboles et démontre que l'aire d'un segment de parabole (région délimitée par une parabole et une corde) est égale aux 4/3 de l'aire du triangle inscrit dont la médiane est parallèle à l'axe de la parabole.
Théorème des gendarmesthumb|upright=1.5|Deux fonctions et qui admettent la même limite au point , et une fonction prise en « étau » entre et dans le voisinage de . Selon le théorème du sandwich, admet comme limite en . En analyse, le théorème des gendarmes (également appelé théorème de l'étau, théorème d'encadrement ou théorème du sandwich) est un théorème concernant la limite d'une fonction. Selon ce théorème, si deux fonctions ( et ) admettent la même limite en un point , et qu'une troisième fonction est prise en « étau » (ou « encadrée » ou « prise en sandwich ») entre et dans le voisinage de , alors admet en une limite, égale à la limite commune de et .
The AnalystThe Analyst (subtitled A Discourse Addressed to an Infidel Mathematician: Wherein It Is Examined Whether the Object, Principles, and Inferences of the Modern Analysis Are More Distinctly Conceived, or More Evidently Deduced, Than Religious Mysteries and Points of Faith) is a book by George Berkeley. It was first published in 1734, first by J. Tonson (London), then by S. Fuller (Dublin). The "infidel mathematician" is believed to have been Edmond Halley, though others have speculated Sir Isaac Newton was intended.
Smooth infinitesimal analysisSmooth infinitesimal analysis is a modern reformulation of the calculus in terms of infinitesimals. Based on the ideas of F. W. Lawvere and employing the methods of , it views all functions as being continuous and incapable of being expressed in terms of discrete entities. As a theory, it is a subset of synthetic differential geometry. The nilsquare or nilpotent infinitesimals are numbers ε where ε2 = 0 is true, but ε = 0 need not be true at the same time.