Azimutvignette|Azimut. L’azimut (anciennement et parfois encore orthographié azimuth) est l'angle dans le plan horizontal entre la direction d'un objet et une direction de référence. Le terme est issu de l'espagnol « acimut », lui-même issu de l'arabe السمت (as-simt), qui signifie direction. Cette référence peut être le nord géographique ou magnétique. L'azimut est mesuré depuis le nord en degrés de 0° (inclus) à 360° (exclu) dans le sens rétrograde (sens des aiguilles d'une montre) : ainsi l’est est au 90°, le sud au 180° et l’ouest au 270°.
Transformation conformeEn mathématiques, et plus précisément en géométrie et en analyse complexe, une transformation conforme est une bijection qui conserve localement les angles, c'est-à-dire qui se comporte au voisinage de chaque point où elle est définie presque comme une similitude. Dans le plan, les transformations conformes qui conservent les angles orientés ont une telle utilité qu'il est fréquent qu'elles soient les seules baptisées du terme de conformes. Elles se confondent alors avec les bijections holomorphes.
Rayon de la Terrevignette|upright=0.7|Rayon de la Terre (en jaune) en fonction de la latitude (φ) comparé à la distance perpendiculaire entre l'axe de rotation de la Terre et la surface (en bleu). Le rayon de la Terre ( ou ) est la distance entre le centre de la Terre et sa surface, d'une valeur d'environ selon divers modèles sphériques. Cette unité de longueur est utilisée dans des domaines tels l'astronomie et la géologie. La Terre n'est pas parfaitement sphérique et les distances entre sa surface et son centre varient de (fond de l'océan Arctique) à (sommet du Chimborazo).
Projection cylindrique équidistanteLa projection cylindrique équidistante, encore appelée projection équirectangulaire ou projection géographique, est un type de projection cartographique très simple attribué à Marinus de Tyr vers 100 ap. J.-C.. La projection consiste à considérer les coordonnées polaires de latitude et longitude comme des coordonnées cartésiennes. En ce sens, on parle parfois de « non-projection ». Cependant la transformation effectuée se définit (partiellement) comme une projection de la surface du globe sur la surface d'un cylindre, dont l'axe se confond avec l'axe des pôles et contient les origines des vecteurs de projection.
Projection sinusoïdalevignette|350px|Carte cosmographique ou universelle : une description du monde par Jean Cossin, Dieppe (1570). vignette|350px|Projection sinusoïdale du globe terrestre. La projection sinusoïdale est une projection cartographique utilisée pour une représentation globale d'un globe. Cette projection est aussi appelée projection de Sanson ou de Flamsteed ; bien que ces dernières se complètent d'un « découpage » du globe pour en « redresser » les continents. Plusieurs méridiens sont alors « rectifiés ».
Globe terrestreUn globe terrestre est une sphère sur laquelle est dessinée la surface de la Terre. Du fait de sa « ressemblance » avec la forme sphérique de la Terre, c'est la représentation la plus exacte de la planète (surtout si on lui a donné un relief sans exagération des altitudes). C'est une représentation à petite échelle. Le globe terrestre se modélise géométriquement par un ellipsoïde de révolution de rayon équatorial a et de rayon polaire b. a est le rayon équatorial (ou demi-grand axe de l'ellipsoïde de référence) valant : a = 6 378,137 000 km (cf modèles WGS84 et GRS 80).
Projection azimutale équivalente de LambertLa projection azimutale équivalente de Lambert est une manière de projeter une sphère sur un plan, et en particulier, une façon de représenter entièrement la surface de la Terre sous la forme d'un disque. C'est donc une projection cartographique azimutale conçue (parmi d'autres) en 1772 par le mathématicien alsacien Johann Heinrich Lambert. Cette projection de Lambert "projette directement" sur un plan (projection azimutale) et conserve localement les surfaces (projection équivalente) ; mais ne conserve pas les angles (projection non conforme).
Projection équivalente cylindrique de Lambertvignette|upright=2|Projection équivalente cylindrique de Lambert du globe. vignette|upright=2|Projection équivalente cylindrique de Lambert du globe, le méridien central étant à 160° ouest pour centrer la carte sur les océans. vignette|upright=2|Projection équivalente cylindrique de Lambert avec les indicatrices de déformation de Tissot. vignette|Comment le globe est projeté sur le cylindre En cartographie, la projection équivalente cylindrique de Lambert, ou projection cylindrique de Lambert, ou encore projection isocylindrique est un type de projection cartographique.
Géodésievignette|Archives géodésiques de Munich, avec au premier plan une planche lithographique concernant les anciens Pays-Bas (région de polders où il était particulièrement important de connaître l'altitude des terres conquises sur la mer souvent situées sous le niveau marin). vignette|Exemple de « point géodésique » de référence marqué par un pilier et daté de 1855, à Ostende sur le littoral de Belgique.
Projection gnomoniqueEn géométrie et en cartographie, une projection gnomonique est une projection cartographique azimutale transformant les grands cercles en lignes droites ; le trajet le plus court entre deux points de la sphère correspond donc à celui sur la carte. La projection gnomonique serait la plus ancienne projection cartographique ; elle aurait été développée par Anaximandre au L'ombre de la pointe d'un gnomon trace les mêmes hyperboles que celles formées par les parallèles d'une carte gnomonique, d'où son nom.