57-cellIn mathematics, the 57-cell (pentacontakaiheptachoron) is a self-dual abstract regular 4-polytope (four-dimensional polytope). Its 57 cells are hemi-dodecahedra. It also has 57 vertices, 171 edges and 171 two-dimensional faces. The symmetry order is 3420, from the product of the number of cells (57) and the symmetry of each cell (60). The symmetry abstract structure is the projective special linear group, L2(19). It has Schläfli type {5,3,5} with 5 hemi-dodecahedral cells around each edge. It was discovered by .
Diagramme de SchlegelEn géométrie, un diagramme de Schlegel est une projection d'un polytope de l'espace à d dimensions dans l'espace à d-1 dimensions par un point donné à travers une de ses faces. Il en résulte une division du polytope d'origine dans qui lui est combinatoirement équivalente. Au début du , les diagrammes de Schlegel s'avérèrent être des outils étonnamment pratiques pour l'étude des propriétés topologiques et combinatoires des polytopes.
Grand dodécaèdre étoiléEn géométrie, le grand dodécaèdre étoilé est un solide de Kepler-Poinsot. C'est l'un des quatre polyèdres réguliers non convexes. Il est composé de 12 faces pentagrammiques, avec trois pentagrammes se rencontrant à chaque sommet. Les 20 sommets ont la même disposition que ceux du dodécaèdre régulier. Raser les pyramides triangulaires donne un icosaèdre régulier. Si les faces pentagrammiques sont cassées en triangles, il est relié topologiquement au triaki-icosaèdre, avec la même connectivité de faces, mais avec des faces triangulaires isocèles plus grandes.
Ludwig SchläfliLudwig Schläfli (1814-1895) est un mathématicien suisse spécialiste en géométrie et en analyse complexe. Il a joué un rôle clé dans le développement de la notion d’espace de dimension quelconque. Ludwig Schläfli a passé la majeure partie de sa vie en Suisse. Il est né à Grasswyl, ville natale de sa mère. La famille a ensuite déménagé pour la ville proche de Berthoud, où son père était commerçant. Son père voulait que Ludwig fît le même métier que lui, mais il ne semblait pas fait pour le travail pratique.
6-simplexIn geometry, a 6-simplex is a self-dual regular 6-polytope. It has 7 vertices, 21 edges, 35 triangle faces, 35 tetrahedral cells, 21 5-cell 4-faces, and 7 5-simplex 5-faces. Its dihedral angle is cos−1(1/6), or approximately 80.41°. It can also be called a heptapeton, or hepta-6-tope, as a 7-facetted polytope in 6-dimensions. The name heptapeton is derived from hepta for seven facets in Greek and -peta for having five-dimensional facets, and -on. Jonathan Bowers gives a heptapeton the acronym hop.