Concept

Koszul complex

Concepts associés (11)
Resolution (algebra)
In mathematics, and more specifically in homological algebra, a resolution (or left resolution; dually a coresolution or right resolution) is an exact sequence of modules (or, more generally, of s of an ), which is used to define invariants characterizing the structure of a specific module or object of this category. When, as usually, arrows are oriented to the right, the sequence is supposed to be infinite to the left for (left) resolutions, and to the right for right resolutions.
Foncteur Tor
En mathématiques, le foncteur Tor est le foncteur dérivé associé au foncteur produit tensoriel. Il trouve son origine en algèbre homologique, où il apparaît notamment dans l'étude des suites spectrales et dans la formulation du théorème de Künneth. Les foncteurs dérivés tentent de mesurer le défaut d'exactitude d'un foncteur. Soit R un anneau, considérons la catégorie RMod des R-modules et ModR des R-modules à droite.
Lie algebra cohomology
In mathematics, Lie algebra cohomology is a cohomology theory for Lie algebras. It was first introduced in 1929 by Élie Cartan to study the topology of Lie groups and homogeneous spaces by relating cohomological methods of Georges de Rham to properties of the Lie algebra. It was later extended by to coefficients in an arbitrary Lie module. If is a compact simply connected Lie group, then it is determined by its Lie algebra, so it should be possible to calculate its cohomology from the Lie algebra.
Lemme de Nakayama
Le lemme de Nakayama est un résultat fondamental d'algèbre commutative. Il doit son origine à , et Wolfgang Krull. Un énoncé général est le suivant : La démonstration de cet énoncé général se ramène à celle du cas particulier N = 0, c'est pourquoi le lemme de Nakayama est souvent énoncé sous cette forme : Le corollaire suivant est parfois également énoncé sous le nom de « lemme de Nakayama » : (En effet, pour tout élément a de R, 1 + a est inversible.) Soit une famille génératrice de M. Il existe des tels que pour tout i, .
Differential graded algebra
In mathematics, in particular in homological algebra, a differential graded algebra is a graded associative algebra with an added chain complex structure that respects the algebra structure. TOC A differential graded algebra (or DG-algebra for short) A is a graded algebra equipped with a map which has either degree 1 (cochain complex convention) or degree −1 (chain complex convention) that satisfies two conditions: A more succinct way to state the same definition is to say that a DG-algebra is a monoid object in the .
Foncteur Ext
Les foncteurs Ext sont les foncteurs dérivés du foncteur Hom. Ils sont d'abord apparus en algèbre homologique, où ils jouent un rôle central par exemple dans le théorème des coefficients universels, mais interviennent aujourd'hui dans de nombreuses branches différentes des mathématiques. Ce foncteur apparaît originellement dans l'étude des extensions de modules, d'où il tire son nom. Soit A une catégorie abélienne. D'après le théorème de plongement de Mitchell, on peut toujours imaginer travailler avec une catégorie de modules.
Homological algebra
Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to algebraic topology) and abstract algebra (theory of modules and syzygies) at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert. Homological algebra is the study of homological functors and the intricate algebraic structures that they entail; its development was closely intertwined with the emergence of .
Algèbre extérieure
En mathématiques, et plus précisément en algèbre et en analyse vectorielle, l'algèbre extérieure d'un espace vectoriel E est une algèbre associative graduée, notée . La multiplication entre deux éléments a et b est appelée le produit extérieur et est notée . Le carré de tout élément de E est zéro (), on dit que la multiplication est alternée, ce qui entraîne que pour deux éléments de E : (la loi est « anti-commutative »). L'algèbre extérieure est aussi appelée algèbre de Grassmann nommée ainsi en l'honneur de Hermann Grassmann.
Module projectif
En mathématiques, un module projectif est un module P (à gauche par exemple) sur un anneau A tel que pour tout morphisme surjectif f : N → M entre deux A-modules (à gauche) et pour tout morphisme g : P → M, il existe un morphisme h : P → N tel que g = fh, c'est-à-dire tel que le diagramme suivant commute : center Autrement dit : P est projectif si pour tout module N, tout morphisme de P vers un quotient de N se factorise par N.
Cohomology
In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.