Pitch detection algorithmA pitch detection algorithm (PDA) is an algorithm designed to estimate the pitch or fundamental frequency of a quasiperiodic or oscillating signal, usually a digital recording of speech or a musical note or tone. This can be done in the time domain, the frequency domain, or both. PDAs are used in various contexts (e.g. phonetics, music information retrieval, speech coding, musical performance systems) and so there may be different demands placed upon the algorithm.
Domaine temporelLe domaine temporel se rapporte à l'analyse de fonctions mathématiques ou de signaux physiques modélisant une variation quelconque au cours du temps. En domaine temporel, la valeur de la fonction ou du signal est connue, soit en quelques points discrets de la durée d'analyse, ou éventuellement, pour tous les nombres réels. L'oscilloscope est parmi les outils usuels permettant de visualiser les signaux physiques du domaine temporel. Domaine fréquentiel Temps (physique) Catégorie:Analyse du signal Catégorie:
Théorème de CarlesonLe théorème de Carleson est un résultat fondamental de l'analyse mathématique établissant la convergence ponctuelle presque partout de la série de Fourier des fonctions L2, c'est-à-dire de carré intégrable. Il a été prouvé par Lennart Carleson en 1966. Ce nom est également souvent utilisé pour se référer à l'extension du résultat proposée par Richard Hunt en 1968, aux fonctions Lp pour p ∈ ]1, +∞[ (connu sous le nom de Théorème de Carleson–Hunt) et aux résultats analogues de convergence ponctuelle presque partout des intégrales de Fourier, ce qui peut être démontré comme étant équivalent.
Envelope (waves)In physics and engineering, the envelope of an oscillating signal is a smooth curve outlining its extremes. The envelope thus generalizes the concept of a constant amplitude into an instantaneous amplitude. The figure illustrates a modulated sine wave varying between an upper envelope and a lower envelope. The envelope function may be a function of time, space, angle, or indeed of any variable.
Multidimensional transformIn mathematical analysis and applications, multidimensional transforms are used to analyze the frequency content of signals in a domain of two or more dimensions. One of the more popular multidimensional transforms is the Fourier transform, which converts a signal from a time/space domain representation to a frequency domain representation. The discrete-domain multidimensional Fourier transform (FT) can be computed as follows: where F stands for the multidimensional Fourier transform, m stands for multidimensional dimension.
Locally compact abelian groupIn several mathematical areas, including harmonic analysis, topology, and number theory, locally compact abelian groups are abelian groups which have a particularly convenient topology on them. For example, the group of integers (equipped with the discrete topology), or the real numbers or the circle (both with their usual topology) are locally compact abelian groups. A topological group is called locally compact if the underlying topological space is locally compact and Hausdorff; the topological group is called abelian if the underlying group is abelian.
Calcul opérationnelEn mathématiques et plus précisément en analyse fonctionnelle, le calcul opérationnel repose essentiellement sur un astucieux changement de variable basé sur la transformée de Laplace permettant l'algébrisation des symboles de dérivation et d'intégration des expressions mathématiques décrivant les phénomènes linéaires. Certains ingénieurs emploient de préférence la transformation de « Laplace-Carson », une constante ayant comme image la même constante.
Convergence of Fourier seriesIn mathematics, the question of whether the Fourier series of a periodic function converges to a given function is researched by a field known as classical harmonic analysis, a branch of pure mathematics. Convergence is not necessarily given in the general case, and certain criteria must be met for convergence to occur. Determination of convergence requires the comprehension of pointwise convergence, uniform convergence, absolute convergence, Lp spaces, summability methods and the Cesàro mean.
Multiplicateur de FourierEn théorie de Fourier, un multiplicateur est un type d'opérateur linéaire ou de transformation de fonctions. Ces opérateurs agissent sur une fonction en modifiant sa transformée de Fourier. Plus précisément, ils multiplient la transformée de Fourier d'une fonction par une fonction choisie connue sous le nom de multiplicateur ou symbole. Parfois, le terme opérateur multiplicateur lui-même est simplement abrégé en multiplicateur. En termes simples, le multiplicateur déforme les fréquences impliquées dans toute fonction.
Noyau de PoissonEn théorie du potentiel, le noyau de Poisson est un opérateur intégral utilisé pour résoudre le problème de Dirichlet en dimension 2. Plus précisément, il donne des solutions à l'équation de Laplace en deux dimensions vérifiant les conditions aux limites de Dirichlet sur le disque unité. Cet opérateur peut se concevoir comme la dérivée de la fonction de Green solution de l'équation de Laplace. Le noyau de Poisson est important en analyse complexe car il est à l'origine de l'intégrale de Poisson qui donne une fonction harmonique définie sur le disque unité prolongement d'une fonction définie sur le cercle unité.