Groupe localement compactUn groupe localement compact est, en mathématiques, un groupe topologique dont l'espace topologique sous-jacent est localement compact. Ces propriétés permettent de définir une mesure, dite mesure de Haar, et donc de calculer des intégrales et des moyennes ou encore une transformée de Fourier. Ces propriétés à la croisée de l'algèbre générale, de la topologie et de la théorie de la mesure sont particulièrement intéressantes, notamment pour leurs applications en physique.
Transformation inverse de LaplaceLa transformation inverse de Laplace (notée ) est la fonction inverse de la transformation de Laplace. La transformation de Laplace a beaucoup d'avantages car la plupart des opérations courantes sur la fonction originale , telle que la dérivation, ou un décalage sur la variable , ont une traduction (plus) simple sur la transformée , mais ces avantages sont sans intérêt si on ne sait pas calculer la transformée inverse d'une transformée donnée.
Hermitian functionIn mathematical analysis, a Hermitian function is a complex function with the property that its complex conjugate is equal to the original function with the variable changed in sign: (where the indicates the complex conjugate) for all in the domain of . In physics, this property is referred to as PT symmetry. This definition extends also to functions of two or more variables, e.g., in the case that is a function of two variables it is Hermitian if for all pairs in the domain of .
Laurent Schwartz (mathématicien)Laurent Moïse Schwartz est un mathématicien français, né le à Paris où il est mort le . Il est le premier Français à obtenir la médaille Fields, en 1950 pour ses travaux sur la théorie des distributions. Professeur emblématique à l'École polytechnique de 1959 à 1980, membre de l'Académie des sciences et intellectuel engagé, il s'est distingué par ses nombreux combats politiques. Laurent Schwartz est issu d’une famille juive d’origine alsacienne, imprégnée de culture scientifique.
Gelfand representationIn mathematics, the Gelfand representation in functional analysis (named after I. M. Gelfand) is either of two things: a way of representing commutative Banach algebras as algebras of continuous functions; the fact that for commutative C*-algebras, this representation is an isometric isomorphism. In the former case, one may regard the Gelfand representation as a far-reaching generalization of the Fourier transform of an integrable function.
Symmetry in quantum mechanicsSymmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry in physics, invariance, and conservation laws, are fundamentally important constraints for formulating physical theories and models.
Fonction C∞ à support compactEn mathématiques, une fonction C à support compact (également appelée fonction test) est une fonction infiniment dérivable dont le support est compact. Ces fonctions sont au cœur de la théorie des distributions, puisque ces dernières sont construites comme éléments du dual topologique de l'espace des fonctions tests. Les fonctions C à support compact sont également utilisées pour construire des suites régularisantes et des partitions de l'unité de classe C.
Fonction d'AiryLa fonction d'Airy Ai est une des fonctions spéciales en mathématiques, c'est-à-dire une des fonctions remarquables apparaissant fréquemment dans les calculs. Elle porte le nom de l'astronome britannique George Biddell Airy, qui l'introduisit pour ses calculs d'optique, notamment lors de l'étude de l'arc-en-ciel. La fonction d'Airy Ai et la fonction Bi, qu'on appelle fonction d'Airy de seconde espèce, sont des solutions de l'équation différentielle linéaire d'ordre deux connue sous le nom d'équation d'Airy.
Chirplet transformIn signal processing, the chirplet transform is an inner product of an input signal with a family of analysis primitives called chirplets. Similar to the wavelet transform, chirplets are usually generated from (or can be expressed as being from) a single mother chirplet (analogous to the so-called mother wavelet of wavelet theory). The term chirplet transform was coined by Steve Mann, as the title of the first published paper on chirplets.
Negative frequencyIn mathematics, signed frequency (negative and positive frequency) expands upon the concept of frequency, from just an absolute value representing how often some repeating event occurs, to also have a positive or negative sign representing one of two opposing orientations for occurrences of those events. The following examples help illustrate the concept: For a rotating object, the absolute value of its frequency of rotation indicates how many rotations the object completes per unit of time, while the sign could indicate whether it is rotating clockwise or counterclockwise.