Set-builder notationIn set theory and its applications to logic, mathematics, and computer science, set-builder notation is a mathematical notation for describing a set by enumerating its elements, or stating the properties that its members must satisfy. Defining sets by properties is also known as set comprehension, set abstraction or as defining a set's intension. Set (mathematics)#Roster notation A set can be described directly by enumerating all of its elements between curly brackets, as in the following two examples: is the set containing the four numbers 3, 7, 15, and 31, and nothing else.
Paradoxe de RussellLe paradoxe de Russell, ou antinomie de Russell, est un paradoxe très simple de la théorie des ensembles (Russell lui-même parle de théorie des classes, en un sens équivalent), qui a joué un rôle important dans la formalisation de celle-ci. Il fut découvert par Bertrand Russell vers 1901 et publié en 1903. Il était en fait déjà connu à Göttingen, où il avait été découvert indépendamment par Ernst Zermelo, à la même époque, mais ce dernier ne l'a pas publié.
Axiome de l'ensemble videL'axiome de l'ensemble vide est, en mathématiques, l'un des axiomes possibles de la théorie des ensembles. Comme son nom l'indique, il permet de poser l'existence d'un ensemble vide. Dans les présentations modernes, il n'est plus mentionné parmi les axiomes des théories des ensembles de Zermelo, ou Zermelo-Fraenkel, car il est conséquence en logique du premier ordre du schéma d'axiomes de compréhension.
Schéma d'axiomesEn logique mathématique, la notion de schéma d’axiomes généralise celle d'axiome. Un schéma d’axiomes est une formule exprimée dans le métalangage d'un système axiomatique, dans lequel une ou plusieurs métavariables apparaissent. Ces variables, qui sont des constructions métalinguistiques, représentent n'importe quel terme ou sous-formule du système logique, qui peut être (ou ne pas être) tenu de satisfaire certaines conditions. Souvent, de telles conditions exigent que certaines des variables soient libres, ou que certaines variables n'apparaissent pas dans la sous-formule ou le terme.
Intersection (mathématiques)Dans la théorie des ensembles, l'intersection est une opération ensembliste qui porte le même nom que son résultat, à savoir l'ensemble des éléments appartenant à la fois aux deux opérandes : l'intersection de deux ensembles A et B est l'ensemble, noté , dit « A inter B », qui contient tous les éléments appartenant à la fois à A et à B, et seulement ceux-là. A et B sont disjoints si et seulement si est l'ensemble vide ∅. A est inclus dans B si et seulement si .
Alternative set theoryIn a general sense, an alternative set theory is any of the alternative mathematical approaches to the concept of set and any alternative to the de facto standard set theory described in axiomatic set theory by the axioms of Zermelo–Fraenkel set theory. More specifically, Alternative Set Theory (or AST) may refer to a particular set theory developed in the 1970s and 1980s by Petr Vopěnka and his students.
Second-order logicIn logic and mathematics, second-order logic is an extension of first-order logic, which itself is an extension of propositional logic. Second-order logic is in turn extended by higher-order logic and type theory. First-order logic quantifies only variables that range over individuals (elements of the domain of discourse); second-order logic, in addition, also quantifies over relations. For example, the second-order sentence says that for every formula P, and every individual x, either Px is true or not(Px) is true (this is the law of excluded middle).
Théorie naïve des ensemblesLes ensembles sont d'une importance fondamentale en mathématiques ; en fait, de manière formelle, la mécanique interne des mathématiques (nombres, relations, fonctions, etc.) peut se définir en termes d'ensembles. Il y a plusieurs façons de développer la théorie des ensembles et plusieurs théories des ensembles existent. Par théorie naïve des ensembles, on entend le plus souvent un développement informel d'une théorie des ensembles dans le langage usuel des mathématiques, mais fondée sur les axiomes de la théorie des ensembles de Zermelo ou de Zermelo-Fraenkel avec axiome du choix dans le style du livre Naive Set Theory de Paul Halmos.
Théorie des ensemblesLa théorie des ensembles est une branche des mathématiques, créée par le mathématicien allemand Georg Cantor à la fin du . La théorie des ensembles se donne comme primitives les notions d'ensemble et d'appartenance, à partir desquelles elle reconstruit les objets usuels des mathématiques : fonctions, relations, entiers naturels, relatifs, rationnels, nombres réels, complexes... C'est pourquoi la théorie des ensembles est considérée comme une théorie fondamentale dont Hilbert a pu dire qu'elle était un « paradis » créé par Cantor pour les mathématiciens.