Le schéma d'axiomes de remplacement, ou schéma d'axiomes de substitution, est un schéma d'axiomes de la théorie des ensembles introduit en 1922 indépendamment par Abraham Adolf Fraenkel et Thoralf Skolem. Il assure l'existence d'ensembles qui ne pouvaient être obtenus dans la théorie des ensembles de Ernst Zermelo, et offre ainsi un cadre axiomatique plus fidèle à la théorie des ensembles de Georg Cantor. En ajoutant à la théorie de Zermelo le schéma d'axiomes de remplacement, on obtient la théorie de Zermelo-Fraenkel, notée ZFC ou ZF suivant que l'on comprend ou non l'axiome du choix. Pour abréger, on dit souvent schéma de remplacement, ou schéma de substitution.
Ce schéma étend le schéma d'axiomes de compréhension de la théorie de Zermelo. Son utilité n'intervient pas immédiatement. Il permet entre autres d'avoir « suffisamment » d'ordinaux, par exemple de définir la « suite » des alephs de Cantor, une suite — indexée par les ordinaux — d'ensembles qui sont eux-mêmes des ordinaux et qui représentent les cardinaux en présence de l'axiome du choix.
Informellement, le schéma de remplacement énonce que, un ensemble étant donné, les images de ses éléments par une relation fonctionnelle forment un ensemble.
Dit ainsi, cela peut paraître plus simple que cela n'est réellement. Il faut préciser ce que l'on entend par « relation fonctionnelle ». Il s'agit d'une « fonction partielle » (en un sens intuitif, pas au sens de la théorie), sur la classe de tous les ensembles, qui est définie par une formule du langage de la théorie. Tout l'intérêt de l'axiome réside dans les cas où cette relation fonctionnelle ne correspond pas à une fonction de la théorie des ensembles étudiée, qui doit être alors définie comme un ensemble (essentiellement un ensemble de couples). Dit autrement, on peut parler de classe fonctionnelle. Les cas particuliers où la classe fonctionnelle n'est pas une classe propre se déduisent des axiomes de la théorie de Zermelo (voir Couple (mathématiques)).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Set Theory as a foundational system for mathematics. ZF, ZFC and ZF with atoms. Relative consistency of the Axiom of Choice, the Continuum Hypothesis, the reals as a countable union of countable sets,
The students study and apply fundamental concepts and algorithms of computer graphics for rendering, geometry
synthesis, and animation. They design and implement their own interactive graphics program
vignette|L'appartenance En mathématiques, la théorie des ensembles de Zermelo-Fraenkel, abrégée en ZF, est une axiomatisation en logique du premier ordre de la théorie des ensembles telle qu'elle avait été développée dans le dernier quart du par Georg Cantor. L'axiomatisation a été élaborée au début du par plusieurs mathématiciens dont Ernst Zermelo et Abraham Fraenkel mais aussi Thoralf Skolem.
L'axiome de fondation, encore appelé axiome de régularité, est l'un des axiomes de la théorie des ensembles. Introduit par Abraham Fraenkel, Thoralf Skolem (1922) et John von Neumann (1925), il joue un grand rôle dans cette théorie, alors que les mathématiciens ne l'utilisent jamais ailleurs, même s'ils le considèrent souvent comme intuitivement vérifié. L'axiome de fondation fait ou non partie des axiomes de ZF (et ZFC) suivant les ouvrages. Dans la suite, on choisit de prendre ZF et ZFC sans axiome de fondation.
Le schéma d'axiomes de compréhension, ou schéma d'axiomes de séparation, est un schéma d'axiomes de la théorie des ensembles introduit par Zermelo dans sa théorie des ensembles, souvent notée Z. On dit souvent en abrégé schéma de compréhension ou schéma de séparation. La théorie des classes permet de l'exprimer comme un seul axiome. Étant donné un ensemble A et une propriété P exprimée dans le langage de la théorie des ensembles, il affirme l'existence de l'ensemble B des éléments de A vérifiant la propriété P.
Couvre les bases des nombres réels et de la théorie des ensembles, y compris les sous-ensembles, les intersections, les syndicats et les opérations des ensembles.
Program synthesis was first proposed a few decades ago, but in the last decade it has gained increased momentum in the research community. The increasing complexity of software has dictated the urgent need for improved supporting tools that verify the soft ...
Humans are comparison machines: comparing and choosing an item among a set of alternatives (such as objects or concepts) is arguably one of the most natural ways for us to express our preferences and opinions. In many applications, the analysis of data con ...
EPFL2018
, , ,
We study a framework for the specification of architecture styles as families of architectures involving a common set of types of components and coordination mechanisms. The framework combines two logics: 1) interaction logics for the specification of arch ...