Concept

Schéma d'axiomes de remplacement

Résumé
Le schéma d'axiomes de remplacement, ou schéma d'axiomes de substitution, est un schéma d'axiomes de la théorie des ensembles introduit en 1922 indépendamment par Abraham Adolf Fraenkel et Thoralf Skolem. Il assure l'existence d'ensembles qui ne pouvaient être obtenus dans la théorie des ensembles de Ernst Zermelo, et offre ainsi un cadre axiomatique plus fidèle à la théorie des ensembles de Georg Cantor. En ajoutant à la théorie de Zermelo le schéma d'axiomes de remplacement, on obtient la théorie de Zermelo-Fraenkel, notée ZFC ou ZF suivant que l'on comprend ou non l'axiome du choix. Pour abréger, on dit souvent schéma de remplacement, ou schéma de substitution. Ce schéma étend le schéma d'axiomes de compréhension de la théorie de Zermelo. Son utilité n'intervient pas immédiatement. Il permet entre autres d'avoir « suffisamment » d'ordinaux, par exemple de définir la « suite » des alephs de Cantor, une suite — indexée par les ordinaux — d'ensembles qui sont eux-mêmes des ordinaux et qui représentent les cardinaux en présence de l'axiome du choix. Informellement, le schéma de remplacement énonce que, un ensemble étant donné, les images de ses éléments par une relation fonctionnelle forment un ensemble. Dit ainsi, cela peut paraître plus simple que cela n'est réellement. Il faut préciser ce que l'on entend par « relation fonctionnelle ». Il s'agit d'une « fonction partielle » (en un sens intuitif, pas au sens de la théorie), sur la classe de tous les ensembles, qui est définie par une formule du langage de la théorie. Tout l'intérêt de l'axiome réside dans les cas où cette relation fonctionnelle ne correspond pas à une fonction de la théorie des ensembles étudiée, qui doit être alors définie comme un ensemble (essentiellement un ensemble de couples). Dit autrement, on peut parler de classe fonctionnelle. Les cas particuliers où la classe fonctionnelle n'est pas une classe propre se déduisent des axiomes de la théorie de Zermelo (voir Couple (mathématiques)).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.