Théorie des ensembles de Zermelo-Fraenkelvignette|L'appartenance En mathématiques, la théorie des ensembles de Zermelo-Fraenkel, abrégée en ZF, est une axiomatisation en logique du premier ordre de la théorie des ensembles telle qu'elle avait été développée dans le dernier quart du par Georg Cantor. L'axiomatisation a été élaborée au début du par plusieurs mathématiciens dont Ernst Zermelo et Abraham Fraenkel mais aussi Thoralf Skolem.
Axiome de fondationL'axiome de fondation, encore appelé axiome de régularité, est l'un des axiomes de la théorie des ensembles. Introduit par Abraham Fraenkel, Thoralf Skolem (1922) et John von Neumann (1925), il joue un grand rôle dans cette théorie, alors que les mathématiciens ne l'utilisent jamais ailleurs, même s'ils le considèrent souvent comme intuitivement vérifié. L'axiome de fondation fait ou non partie des axiomes de ZF (et ZFC) suivant les ouvrages. Dans la suite, on choisit de prendre ZF et ZFC sans axiome de fondation.
Schéma d'axiomes de compréhensionLe schéma d'axiomes de compréhension, ou schéma d'axiomes de séparation, est un schéma d'axiomes de la théorie des ensembles introduit par Zermelo dans sa théorie des ensembles, souvent notée Z. On dit souvent en abrégé schéma de compréhension ou schéma de séparation. La théorie des classes permet de l'exprimer comme un seul axiome. Étant donné un ensemble A et une propriété P exprimée dans le langage de la théorie des ensembles, il affirme l'existence de l'ensemble B des éléments de A vérifiant la propriété P.
Théorie des ensembles de ZermeloLa théorie des ensembles de Zermelo, est la théorie des ensembles introduite en 1908 par Ernst Zermelo dans un article fondateur de l'axiomatisation de la théorie des ensembles moderne, mais aussi une présentation moderne de celle-ci, où les axiomes sont repris dans le langage de la logique du premier ordre, et où l'axiome de l'infini est modifié pour permettre la construction des entiers naturels de von Neumann. Cette section présente les axiomes originaux de l'article de Zermelo paru en 1908, numérotés comme dans cet article.
Univers de von NeumannEn théorie des ensembles, une des branches des mathématiques, l'univers de von Neumann, ou hiérarchie cumulative de von Neumann, est la classe notée V d'ensembles « héréditaires », tels que la relation d'appartenance sur ces ensembles soit bien fondée. Cette classe, qui est formalisée par la théorie des ensembles de Zermelo-Fraenkel (ZFC), est souvent utilisée pour fournir une interprétation ou une motivation des axiomes de ZFC. Ce concept est nommé d'après John von Neumann, bien qu'il ait été publié pour la première fois par Ernst Zermelo en 1930.
Univers constructibleEn mathématiques et en théorie des ensembles, l'univers constructible, ou l'univers constructible de Gödel, noté , est une classe d'ensembles qui peuvent entièrement être décrits en termes d'ensembles plus simples. Elle a été introduite en 1938 par Kurt Gödel dans son article sur . Il y montrait que cette classe est un de la théorie ZF et que l'axiome du choix et l'hypothèse généralisée du continu sont vrais dans ce modèle. Ceci prouve que ces deux propositions sont cohérentes avec les axiomes de ZF, à condition que ZF soit déjà cohérente.
Axiome de l'infiniEn mathématiques, dans le domaine de la théorie des ensembles, l'axiome de l'infini est l'un des axiomes de la théorie des ensembles de Zermelo-Fraenkel, qui assure l'existence d'un ensemble infini, plus précisément d'un ensemble qui contient une représentation des entiers naturels. Il apparait dans la première axiomatisation de la théorie des ensembles, publiée par Ernst Zermelo en 1908, sous une forme cependant un peu différente de celle exposée ci-dessous.
Théorie naïve des ensemblesLes ensembles sont d'une importance fondamentale en mathématiques ; en fait, de manière formelle, la mécanique interne des mathématiques (nombres, relations, fonctions, etc.) peut se définir en termes d'ensembles. Il y a plusieurs façons de développer la théorie des ensembles et plusieurs théories des ensembles existent. Par théorie naïve des ensembles, on entend le plus souvent un développement informel d'une théorie des ensembles dans le langage usuel des mathématiques, mais fondée sur les axiomes de la théorie des ensembles de Zermelo ou de Zermelo-Fraenkel avec axiome du choix dans le style du livre Naive Set Theory de Paul Halmos.
Paradoxe de RussellLe paradoxe de Russell, ou antinomie de Russell, est un paradoxe très simple de la théorie des ensembles (Russell lui-même parle de théorie des classes, en un sens équivalent), qui a joué un rôle important dans la formalisation de celle-ci. Il fut découvert par Bertrand Russell vers 1901 et publié en 1903. Il était en fait déjà connu à Göttingen, où il avait été découvert indépendamment par Ernst Zermelo, à la même époque, mais ce dernier ne l'a pas publié.
Constructive set theoryAxiomatic constructive set theory is an approach to mathematical constructivism following the program of axiomatic set theory. The same first-order language with "" and "" of classical set theory is usually used, so this is not to be confused with a constructive types approach. On the other hand, some constructive theories are indeed motivated by their interpretability in type theories. In addition to rejecting the principle of excluded middle (), constructive set theories often require some logical quantifiers in their axioms to be set bounded, motivated by results tied to impredicativity.