Conjecture de HadwigerEn théorie des graphes, la conjecture de Hadwiger est une conjecture très générale sur les problèmes de coloration de graphes. Formulée en 1943 par Hugo Hadwiger, elle énonce que si le graphe complet à k sommets, noté , n'est pas un mineur d'un graphe , alors il est possible de colorer les sommets de avec couleurs. Hadwiger a prouvé les cas dans le même article qui formule la conjecture. Wagner a prouvé en 1937 que le cas est équivalent au théorème des quatre couleurs, et la démonstration en 1976 par Appel et Haken du théorème des quatre couleurs a donc prouvé en même temps la conjecture de Hadwiger pour le cas .
Clique-sumIn graph theory, a branch of mathematics, a clique-sum is a way of combining two graphs by gluing them together at a clique, analogous to the connected sum operation in topology. If two graphs G and H each contain cliques of equal size, the clique-sum of G and H is formed from their disjoint union by identifying pairs of vertices in these two cliques to form a single shared clique, and then possibly deleting some of the clique edges. A k-clique-sum is a clique-sum in which both cliques have at most k vertices.
Graphe scindévignette|240x240px| Un graphe scindé, partitionné en une clique et un ensemble stable. En théorie des graphes, un graphe scindé ou graphe séparé (en anglais : split graph) est un graphe dont les sommets peuvent être partitionnés deux parties : une clique et un ensemble stable. Les graphes scindés ont été étudiés pour la première fois par Földes et Marteau en 1977, et introduit indépendamment par Tyshkevich et Tchernyak en 1979 .
Fermeture transitiveLa fermeture transitive est une opération mathématique pouvant être appliquée sur des relations binaires sur un ensemble, autrement dit sur des graphes orientés. La clôture transitive, ou fermeture transitive R d'une relation binaire R sur un ensemble X est la relation ce qui peut également se traduire ainsi : Si on nomme la relation "il existe un chemin de taille n entre a et b" On définit C'est la plus petite relation transitive sur X contenant R.
Ensemble dominantEn théorie des graphes, un ensemble dominant (ou dominating set en anglais) d'un graphe G = ( S, A ) est un sous-ensemble D de l'ensemble S des sommets tel que tout sommet qui n'appartient pas à D possède au moins une arête d'extrémité un sommet de D. Le problème de l'ensemble dominant est de déterminer, étant donné G et un entier naturel k, si G possède un ensemble dominant d'au plus k sommets. Ce problème est NP-complet.
Maximal independent setIn graph theory, a maximal independent set (MIS) or maximal stable set is an independent set that is not a subset of any other independent set. In other words, there is no vertex outside the independent set that may join it because it is maximal with respect to the independent set property. For example, in the graph P_3, a path with three vertices a, b, and c, and two edges and , the sets {b} and {a, c} are both maximally independent. The set {a} is independent, but is not maximal independent, because it is a subset of the larger independent set {a, c}.
Kuratowski's theoremIn graph theory, Kuratowski's theorem is a mathematical forbidden graph characterization of planar graphs, named after Kazimierz Kuratowski. It states that a finite graph is planar if and only if it does not contain a subgraph that is a subdivision of (the complete graph on five vertices) or of (a complete bipartite graph on six vertices, three of which connect to each of the other three, also known as the utility graph).
Théorie des graphes extrémauxEn théorie des graphes, un graphe extrémal (anglais : extremal graph) par rapport à une propriété est un graphe tel que l'ajout de n'importe quelle arête amène le graphe à vérifier la propriété . L'étude des graphes extrémaux se décompose en deux sujets : la recherche de bornes inférieures sur le nombre d'arêtes nécessaires à assurer la propriété (voire sur d'autres paramètres comme le degré minimum) et la caractérisation des graphes extrémaux proprement dits. L'étude des graphes extrémaux est une branche de l'étude combinatoire des graphes.
Graphe médianEn théorie des graphes, un graphe médian est un type de graphe. Étant donné un triplet de nœuds dans un graphe, les médians de ces sommets sont les sommets se trouvant sur les plus courts chemins entre ces sommets. Un graphe médian est un graphe tel que pour tout triplet de nœuds il existe un unique médian. En théorie des graphes, les médians d'un triplet de sommets sont les sommets se trouvant sur les plus courts chemins entre ces sommets. Autrement dit, si est l'ensemble de sommets sur les plus courts chemins entre et , alors l'ensemble des sommets médians est .
Intersection number (graph theory)In the mathematical field of graph theory, the intersection number of a graph is the smallest number of elements in a representation of as an intersection graph of finite sets. In such a representation, each vertex is represented as a set, and two vertices are connected by an edge whenever their sets have a common element. Equivalently, the intersection number is the smallest number of cliques needed to cover all of the edges of .