Théorème de VizingLe théorème de Vizing est un théorème de la théorie des graphes qui stipule que la coloration des arêtes d'un graphe G peut s'effectuer à l'aide de Δ+1 couleurs au maximum, où Δ est le degré maximal du graphe G. Il est dû à Vadim G. Vizing. Une coloration des arêtes d'un graphe consiste à attribuer à chaque arête une couleur, en évitant que deux arêtes ayant une extrémité commune soient de la même couleur. On note χ′(G) le nombre minimum de couleur nécessaire pour avoir une coloration des arêtes.
Graphe cheminIn the mathematical field of graph theory, a path graph (or linear graph) is a graph whose vertices can be listed in the order v_1, v_2, ..., v_n such that the edges are {v_i, v_i+1} where i = 1, 2, ..., n − 1. Equivalently, a path with at least two vertices is connected and has two terminal vertices (vertices that have degree 1), while all others (if any) have degree 2. Paths are often important in their role as subgraphs of other graphs, in which case they are called paths in that graph.
Trapezoid graphIn graph theory, trapezoid graphs are intersection graphs of trapezoids between two horizontal lines. They are a class of co-comparability graphs that contain interval graphs and permutation graphs as subclasses. A graph is a trapezoid graph if there exists a set of trapezoids corresponding to the vertices of the graph such that two vertices are joined by an edge if and only if the corresponding trapezoids intersect. Trapezoid graphs were introduced by Dagan, Golumbic, and Pinter in 1988.
Graphe de permutationEn théorie des graphes, un graphe de permutation est un graphe non orienté dont les sommets représentent les éléments d'une permutation, et dont les arêtes relient les paires de sommets qui sont inversés dans la permutation. On peut aussi définir les graphes de permutations de manière géométrique : ce sont les graphes d'intersections de segments dont les extrémités sont sur deux droites parallèles. On définit les graphes de permutation de la manière suivante.
Multipartite graphIn graph theory, a part of mathematics, a k-partite graph is a graph whose vertices are (or can be) partitioned into k different independent sets. Equivalently, it is a graph that can be colored with k colors, so that no two endpoints of an edge have the same color. When k = 2 these are the bipartite graphs, and when k = 3 they are called the tripartite graphs. Bipartite graphs may be recognized in polynomial time but, for any k > 2 it is NP-complete, given an uncolored graph, to test whether it is k-partite.
Universal vertexIn graph theory, a universal vertex is a vertex of an undirected graph that is adjacent to all other vertices of the graph. It may also be called a dominating vertex, as it forms a one-element dominating set in the graph. (It is not to be confused with a universally quantified vertex in the logic of graphs.) A graph that contains a universal vertex may be called a cone. In this context, the universal vertex may also be called the apex of the cone.
Graphe à seuilvignette| Un graphe à seuil. En théorie des graphes, un graphe à seuil est un graphe qui peut être construit, en partant d'un graphe à un seul sommet, par application répétée d'une des deux opérations suivantes : Ajout d'un sommet isolé au graphe. Ajout d'un sommet dominant au graphe, c'est-à-dire d'un sommet connecté à tous les autres sommets. Par exemple, le graphe de la figure ci-contre est un graphe de seuil : il peut être construit en commençant par un graphe à un seul sommet (sommet 1), puis en ajoutant les sept autres dans l'ordre dans lequel ils sont numérotés, les sommets noirs comme sommets isolés et les sommets rouges comme sommets dominants.
Exponential time hypothesisIn computational complexity theory, the exponential time hypothesis is an unproven computational hardness assumption that was formulated by . It states that satisfiability of 3-CNF Boolean formulas cannot be solved in subexponential time, i.e., for all constant , where n is the number of variables in the formula. The exponential time hypothesis, if true, would imply that P ≠ NP, but it is a stronger statement.
Perfect graph theoremIn graph theory, the perfect graph theorem of states that an undirected graph is perfect if and only if its complement graph is also perfect. This result had been conjectured by , and it is sometimes called the weak perfect graph theorem to distinguish it from the strong perfect graph theorem characterizing perfect graphs by their forbidden induced subgraphs. A perfect graph is an undirected graph with the property that, in every one of its induced subgraphs, the size of the largest clique equals the minimum number of colors in a coloring of the subgraph.