Théorie de RamseyEn mathématiques, et plus particulièrement en combinatoire, la théorie de Ramsey, nommée d'après Frank Ramsey, tente typiquement de répondre à des questions de la forme : « combien d'éléments d'une certaine structure doivent être considérés pour qu'une propriété particulière se vérifie ? » Le premier exemple de résultat de cette forme est le principe des tiroirs, énoncé par Dirichlet en 1834. Supposons, par exemple, que n chaussettes soient rangées dans m tiroirs.
Claw-free graphIn graph theory, an area of mathematics, a claw-free graph is a graph that does not have a claw as an induced subgraph. A claw is another name for the complete bipartite graph K1,3 (that is, a star graph comprising three edges, three leaves, and a central vertex). A claw-free graph is a graph in which no induced subgraph is a claw; i.e., any subset of four vertices has other than only three edges connecting them in this pattern. Equivalently, a claw-free graph is a graph in which the neighborhood of any vertex is the complement of a triangle-free graph.
Maximal independent setIn graph theory, a maximal independent set (MIS) or maximal stable set is an independent set that is not a subset of any other independent set. In other words, there is no vertex outside the independent set that may join it because it is maximal with respect to the independent set property. For example, in the graph P_3, a path with three vertices a, b, and c, and two edges and , the sets {b} and {a, c} are both maximally independent. The set {a} is independent, but is not maximal independent, because it is a subset of the larger independent set {a, c}.
Problème 2-SATEn informatique théorique, le problème 2-SAT est un problème de décision. C'est une restriction du problème SAT qui peut être résolu en temps polynomial, alors que le problème général est NP complet. Le problème 2-SAT consiste à décider si une formule booléenne en forme normale conjonctive, dont toutes les clauses sont de taille 2, est satisfaisable. De telles formules sont appelées 2-CNF ou formules de Krom. On considère des formules en forme normale conjonctive, c'est-à-dire que ce sont des ET de OU de littéraux (un littéral est une variable ou la négation d'une variable).
Théorème de TuránLe théorème de Turán est un résultat de théorie des graphes extrémaux découvert par Pál Turán. Ce théorème donne une borne supérieure sur le nombre d'arêtes dans les graphes ne contenant pas de cliques plus grosses qu'un paramètre r, et donne une caractérisation des graphes atteignant cette borne, ce sont les graphes de Turán. Ce résultat de 1941 a lancé la théorie des graphes extrémaux et possède de nombreuses preuves. Tout graphe G ayant n sommets, et ne contenant pas de clique de taille plus grande que r (i.
Théorie spectrale des graphesEn mathématiques, la théorie spectrale des graphes s'intéresse aux rapports entre les spectres des différentes matrices que l'on peut associer à un graphe et ses propriétés. C'est une branche de la théorie algébrique des graphes. On s'intéresse en général à la matrice d'adjacence et à la matrice laplacienne normalisée. Soit un graphe , où désigne l'ensemble des sommets et l'ensemble des arêtes. Le graphe possède sommets, notés et arêtes, notées .
Théorème de RamseyEn mathématiques, et plus particulièrement en combinatoire, le théorème de Ramsey, dû à Frank Ramsey (en 1930), est un théorème fondamental de la théorie de Ramsey. Il affirme que pour tout n, tout graphe complet suffisamment grand dont les arêtes sont colorées contient des sous-graphes complets de taille n d'une seule couleur. En théorie des ensembles, une de ses généralisations, le théorème de Ramsey infini, permet de définir un type particulier de grand cardinal.
Graphe de disquesEn théorie des graphes, un graphe de disques (ou disk graph en anglais) est le graphe d'intersection d'une collection de disques. C'est une extension du concept de graphe d'intervalle à la dimension 2. Formellement, G est un graphe de disques s'il existe une collection de disques dans le plan dont les centres sont en bijection avec les sommets de G et telle que deux disques s'intersectent si et seulement si les sommets correspondants sont reliés par une arête dans G.
Edge coverIn graph theory, an edge cover of a graph is a set of edges such that every vertex of the graph is incident to at least one edge of the set. In computer science, the minimum edge cover problem is the problem of finding an edge cover of minimum size. It is an optimization problem that belongs to the class of covering problems and can be solved in polynomial time. Formally, an edge cover of a graph G is a set of edges C such that each vertex in G is incident with at least one edge in C.
Covering problemsIn combinatorics and computer science, covering problems are computational problems that ask whether a certain combinatorial structure 'covers' another, or how large the structure has to be to do that. Covering problems are minimization problems and usually integer linear programs, whose dual problems are called packing problems. The most prominent examples of covering problems are the set cover problem, which is equivalent to the hitting set problem, and its special cases, the vertex cover problem and the edge cover problem.