Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'échantillonnage d'importance dans les calculs de Monte Carlo, en mettant l'accent sur les changements variables et la sélection de la distribution pour plus d'efficacité.
Explore les mesures d'évaluation des modèles, les techniques de sélection, le compromis biais-variance et la gestion des distributions de données biaisées dans l'apprentissage automatique.
Explore la quantification et le codage des signaux numériques, en discutant de la quantification uniforme, de l'analyse des erreurs et du rapport signal/bruit de quantification.
Explique les méthodes statistiques dans l'analyse quantitative, en mettant l'accent sur la précision, la précision et la représentation de l'échantillon.
Couvre le concept d'échantillonnage, le théorème d'échantillonnage, la reconstruction du signal et la conversion des signaux analogiques en signaux numériques.
Explore les règles d'association dans l'extraction de données, y compris les mesures, les techniques et les algorithmes pour l'extraction efficace des règles.