In virtual reality (VR) and augmented reality (AR), a pose tracking system detects the precise pose of head-mounted displays, controllers, other objects or body parts within Euclidean space. Pose tracking is often referred to as 6DOF tracking, for the six degrees of freedom in which the pose is often tracked.
Pose tracking is sometimes referred to as positional tracking, but the two are separate. Pose tracking is different from positional tracking because pose tracking includes orientation whereas and positional tracking does not. In some consumer GPS systems, orientation data is added additionally using magnetometers, which give partial orientation information, but not the full orientation that pose tracking provides.
In VR, it is paramount that pose tracking is both accurate and precise so as not to break the illusion of a being in virtual world. Several methods of tracking the position and orientation (pitch, yaw and roll) of the display and any associated objects or devices have been developed to achieve this. Many methods utilize sensors which repeatedly record signals from transmitters on or near the tracked object(s), and then send that data to the computer in order to maintain an approximation of their physical locations. A popular tracking method is Lighthouse tracking. By and large, these physical locations are identified and defined using one or more of three coordinate systems: the Cartesian rectilinear system, the spherical polar system, and the cylindrical system. Many interfaces have also been designed to monitor and control one's movement within and interaction with the virtual 3D space; such interfaces must work closely with positional tracking systems to provide a seamless user experience.
Another type of pose tracking used more often in newer systems is referred to as inside-out tracking, including Simultaneous localization and mapping (SLAM) or Visual-intertial odometry (VIO). One example of a device that uses inside-out pose tracking is the Oculus Quest 2.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The goal of VR is to embed the users in a potentially complex virtual environment while ensuring that they are able to react as if this environment were real. The course provides a human perception-ac
Un casque de réalité virtuelle (ou casque VR) est un dispositif porté sur la tête qui permet au porteur d'être immergé dans une réalité virtuelle. Les casques de réalité virtuelle sont fortement associés aux jeux vidéo mais peuvent également être utilisés dans d'autres contextes, tel que l'entraînement ou la médecine. Ils sont composés d'un visiocasque stéréoscopique, de son stéréo, et de capteurs de position de la tête, des membres, du corps ou des yeux (tels que gyroscopes, accéléromètres ou optiques).
thumb|Le casque de réalité virtuelle Oculus Rift. Un visiocasque est un dispositif d'affichage, porté sur la tête ou dans un casque, qui a un petit écran d'affichage en face d'un œil (visiocasque monoculaire) ou de chaque œil (visiocasque binoculaire). Le visiocasque est parfois appelé casque de visualisation, casque immersif, casque-écran ou casque HMD (où HMD signifie head-mounted display), voire simplement .
vignette|250x250px|Personnel de l'U.S. Navy utilisant un simulateur de parachute. L'expression « réalité virtuelle » (ou multimédia immersif ou réalité simulée par ordinateur) renvoie typiquement à une technologie informatique qui simule la présence physique d'un utilisateur dans un environnement artificiellement généré par des logiciels. La réalité virtuelle crée un environnement avec lequel l'utilisateur peut interagir. La réalité virtuelle reproduit donc artificiellement une expérience sensorielle, qui peut inclure la vue, le toucher, l'ouïe et l'odorat (visuelle, sonore ou haptique).
Plonge dans la théorie de la trame de repos et la latence «motion to photon» en réalité virtuelle.
Couvre la visualisation des données des capteurs des smartphones et l'application de capteurs dans le suivi des mouvements sportifs.
Explore les systèmes de mesure en laboratoire en biomécanique, y compris les ultrasons, les capteurs magnétiques, l'imagerie par rayons X, et HTC Vive.
This bachelor project, conducted at the Experimental Museology Laboratory (eM+) at EPFL, focusing on immersive technologies and visualization systems. The project aimed to enhance the Panorama+, a 360-degree stereoscopic interactive visualization system, b ...
2024
, , , ,
We present TimberTool (TTool v2.1.1), a software designed for woodworking tasks assisted by augmented reality (AR), emphasizing its essential function of the real-time localization of a tool head’s poses within camera frames. The localization process, a fu ...
We propose a test -time adaptation for 6D object pose tracking that learns to adapt a pre -trained model to track the 6D pose of novel objects. We consider the problem of 6D object pose tracking as a 3D keypoint detection and matching task and present a mo ...