NoethérienEn mathématiques, l'adjectif « noethérien » est utilisé pour décrire des objets vérifiant la condition de chaîne ascendante ou descendante sur un certain type de sous-objets ; en particulier : un groupe qui vérifie la condition de chaîne ascendante sur les sous-groupes ; Anneau noethérien, un anneau qui vérifie la condition de chaîne ascendante sur les idéaux ; Module noethérien, un module qui vérifie la condition de chaîne ascendante sur les sous-modules ; Espace noethérien, un espace topologique qui vérif
Équivalence de MoritaEn algèbre, et plus précisément en théorie des anneaux, l'équivalence de Morita est une relation entre anneaux. Elle est nommée d'après le mathématicien japonais Kiiti Morita qui l'a introduite dans un article de 1958. L'étude d'un anneau consiste souvent à explorer la catégorie des modules sur cet anneau. Deux anneaux sont en équivalence de Morita précisément lorsque leurs catégories de modules sont équivalentes. L'équivalence de Morita présente surtout un intérêt dans l'étude des anneaux non commutatifs.
Module artinienEn théorie des anneaux, un module artinien (du nom d'Emil Artin) est un module vérifiant la condition de chaîne descendante. On dit qu'un module M vérifie la condition de chaîne descendante si toute suite décroissante de sous-modules de M est stationnaire. Cela équivaut à dire que tout ensemble non vide de sous-modules de M admet un élément minimal (pour la relation d'inclusion). Tout module fini est artinien. En particulier, tout groupe abélien fini est artinien (en tant que Z-module).
Algèbre généraleL'algèbre générale, ou algèbre abstraite, est la branche des mathématiques qui porte principalement sur l'étude des structures algébriques et de leurs relations. L'appellation algèbre générale s'oppose à celle d'algèbre élémentaire ; cette dernière enseigne le calcul algébrique, c'est-à-dire les règles de manipulation des formules et des expressions algébriques. Historiquement, les structures algébriques sont apparues dans différents domaines des mathématiques, et n'y ont pas été étudiées séparément.
Anneau artinienEn algèbre commutative, un anneau artinien est un anneau vérifiant la condition de chaîne descendante pour ses idéaux. Les anneaux artiniens doivent leur nom au mathématicien autrichien Emil Artin. On dit qu'un anneau commutatif (unitaire) A est un anneau artinien si c'est un A-module artinien, autrement dit, si toute suite décroissante d'idéaux de A est stationnaire. Cela équivaut à dire que tout ensemble non vide d'idéaux de A admet un élément minimal (pour la relation d'inclusion).
Matrix ringIn abstract algebra, a matrix ring is a set of matrices with entries in a ring R that form a ring under matrix addition and matrix multiplication . The set of all n × n matrices with entries in R is a matrix ring denoted Mn(R) (alternative notations: Matn(R) and Rn×n). Some sets of infinite matrices form infinite matrix rings. Any subring of a matrix ring is a matrix ring. Over a rng, one can form matrix rngs. When R is a commutative ring, the matrix ring Mn(R) is an associative algebra over R, and may be called a matrix algebra.
Finitely generated moduleIn mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring R may also be called a finite R-module, finite over R, or a module of finite type. Related concepts include finitely cogenerated modules, finitely presented modules, finitely related modules and coherent modules all of which are defined below. Over a Noetherian ring the concepts of finitely generated, finitely presented and coherent modules coincide.
Emmy NoetherAmalie Emmy Noether ( – ) est une mathématicienne allemande spécialiste d'algèbre abstraite et de physique théorique. Considérée par Albert Einstein comme , elle a révolutionné les théories des anneaux, des corps et des algèbres. En physique, le théorème de Noether explique le lien fondamental entre la symétrie et les lois de conservation et est considéré comme aussi important que la théorie de la relativité. Emmy Noether naît dans une famille juive d'Erlangen (à l'époque dans le royaume de Bavière).
Dimension de KrullEn mathématiques, et plus particulièrement en géométrie algébrique, la taille et la complexité d'une variété algébrique (ou d'un schéma) est d'abord mesurée par sa dimension. Elle est fondée sur la topologie de Zariski et coïncide avec l'intuition dans le cas des espaces affines. Espace topologique irréductible Soit un espace topologique. On dit que est irréductible si tout ouvert non vide de est partout dense dans . Cela revient à dire que si et sont deux parties fermées dont la réunion est égale à , alors l'une d'entre elles est égale à .
Conditions de chaîneLes conditions de chaîne (ascendante et descendante) sont deux propriétés mathématiques sur les ordres, identifiées initialement par Emmy Noether dans le contexte de l'algèbre commutative. Sur un ensemble partiellement ordonné (V, ≤), la condition de chaîne ascendante désigne la propriété suivante : toute suite croissante (xn)n ∈ N d'éléments de V est stationnaire, c'est-à-dire constante à partir d'un certain rang (il existe un entier N tel que pour tout n ≥ N, xn = xN) ou également la propriété (équivalente car il s'agit d'une relation d'ordre) V ne contient pas de suite infinie strictement croissante.