Concept

Droite de Henry

Résumé
En statistique, la droite de Henry est une méthode graphique pour ajuster une distribution gaussienne à celle d'une série d'observations (d'une variable numérique continue). En cas d'ajustement, elle permet de lire rapidement la moyenne et l'écart type d'une telle distribution. C'est une méthode voisine de la technique du diagramme quantile-quantile appliquée aux distributions normales. Histoire Cette droite porte le nom du polytechnicien P.J.P. Henri (ou Henry) (1848 - 1907) qui l'a mise au point et en a enseigné l'utilisation à l'école d'artillerie dans les années 1880. Jules Haag l'introduisit par la suite dans son cours à l'école d'artillerie de Fontainebleau. Principe Soit X est une variable gaussienne de moyenne et de variance σ2. Si N est une variable de loi normale centrée réduite, on a les égalités suivantes : : \mathbb{P}(\mathrm{X} < x) = \mathbb{P} \left ( \frac{\mathrm{X} - \overline{x}}{\sigma} < \frac{x - \overline {x}}{\sigma} \right )
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement