En statistique, la droite de Henry est une méthode graphique pour ajuster une distribution gaussienne à celle d'une série d'observations (d'une variable numérique continue). En cas d'ajustement, elle permet de lire rapidement la moyenne et l'écart type d'une telle distribution. C'est une méthode voisine de la technique du diagramme quantile-quantile appliquée aux distributions normales. Cette droite porte le nom du polytechnicien P.J.P. Henri (ou Henry) (1848 - 1907) qui l'a mise au point et en a enseigné l'utilisation à l'école d'artillerie dans les années 1880. Jules Haag l'introduisit par la suite dans son cours à l'école d'artillerie de Fontainebleau. Soit X est une variable gaussienne de moyenne et de variance σ2. Si N est une variable de loi normale centrée réduite, on a les égalités suivantes : avec (on note Φ la fonction de répartition de la loi normale centrée réduite). Pour chaque valeur xi de la variable X, on peut, à l'aide d'une table de la fonction Φ : calculer ; en déduire ti tel que . Si la variable est gaussienne, les points de coordonnées (xi ; ti) sont alignés sur la droite d'équation C'est la droite de Henry. On compare donc les valeurs des quantiles de la loi empirique (xi) aux quantiles de la loi normale centrée réduite ti. Cette méthode peut également se généraliser à d'autres distributions en comparant là encore les quantiles théoriques aux quantiles empiriques ; on parle parfois de « tracé quantile-quantile ». Lors d'un examen noté sur 20, on obtient les résultats suivants : 10 % des candidats ont obtenu moins de 4 30 % des candidats ont obtenu moins de 8 60 % des candidats ont obtenu moins de 12 80 % des candidats ont obtenu moins de 16 On cherche à déterminer si la distribution des notes est gaussienne, et, si oui, ce que valent son espérance et son écart type. On connaît donc 4 valeurs xi, et, pour ces 4 valeurs, on connaît P(X < xi). En utilisant la table de la fonction de répartition de la loi normale centrée réduite, on détermine les ti correspondants : On trace les points de coordonnées (xi ; ti).
Henrik Moodysson Rønnow, Luc Testa, Ursula Bengaard Hansen, Mechthild Enderle
Alireza Moallemi, Robin Lewis Modini, Philippe Giaccari