Concept

Bicategory

Concepts associés (5)
Théorie des catégories supérieures
En mathématiques, la théorie des catégories supérieures est la partie de la théorie des catégories à un ordre supérieur, ce qui signifie que certaines égalités sont remplacées par des flèches explicites afin de pouvoir étudier explicitement la structure derrière ces égalités. La théorie des catégories supérieures est souvent appliquée en topologie algébrique (en particulier en théorie de l'homotopie ), où l'on étudie les invariants algébriques des espaces, tels que leur ∞-groupoïde fondamental faible.
2-catégorie
En mathématiques, et plus particulièrement en théorie des catégories, une 2-catégorie est une catégorie avec des « morphismes entre les morphismes », c'est-à-dire que chaque « ensemble des morphismes » transporte la structure d'une catégorie. Une 2-catégorie peut être formellement définie comme étant une catégorie enrichie au-dessus de Cat (la catégorie des catégories petites et les foncteurs entre elles), avec la structure monoïdale donnée par le produit de deux catégories.
Catégorie monoïdale
En mathématiques, une catégorie monoïdale est une catégorie munie d'un bifoncteur qui généralise la notion de produit tensoriel de deux structures algébriques. Intuitivement, il s'agit de l'analogue, au niveau des catégories, de la notion de monoïde, c'est-à-dire que le bifoncteur joue le rôle d'une sorte de multiplication pour les objets de la catégorie. Une catégorie monoïdale est une catégorie munie : D'un bifoncteur appelé produit tensoriel. D'un objet I appartenant à appelé « objet unité ».
Transformation naturelle
En théorie des catégories, une transformation naturelle permet de transformer un foncteur en un autre tout en respectant la structure interne (c'est-à-dire la composition des morphismes) des catégories considérées. On peut ainsi la voir comme un morphisme de foncteurs. Soient et deux catégories, F et G deux foncteurs covariants de dans .
Théorie des catégories
La théorie des catégories est l'étude des structures mathématiques et de leurs relations. Ce domaine est né du constat de l'abondance de caractéristiques partagées par diverses classes liées à des structures mathématiques. Les catégories sont utilisées dans la plupart des branches mathématiques et dans certains secteurs de l'informatique théorique et en mathématiques de la physique. Elles forment une notion unificatrice.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.