Intersection (mathématiques)Dans la théorie des ensembles, l'intersection est une opération ensembliste qui porte le même nom que son résultat, à savoir l'ensemble des éléments appartenant à la fois aux deux opérandes : l'intersection de deux ensembles A et B est l'ensemble, noté , dit « A inter B », qui contient tous les éléments appartenant à la fois à A et à B, et seulement ceux-là. A et B sont disjoints si et seulement si est l'ensemble vide ∅. A est inclus dans B si et seulement si .
Produit (mathématiques)On nomme produit de nombres entiers, réels, complexes ou autres le résultat de leur multiplication. Les éléments multipliés s’appellent les facteurs du produit. L’expression d’un produit est aussi appelée « produit », par exemple l’écriture 3a du triple du nombre a est un produit de deux facteurs, où le symbole de la multiplication est sous-entendu. L'ordre dans lequel les nombres réels ou les nombres complexes sont multipliés, de même que la façon de regrouper ces termes, n'ont pas d'importance ; ainsi, nulle permutation de termes ne modifie le résultat du produit.
Série (mathématiques)En mathématiques, la notion de série permet de généraliser la notion de somme finie. Étant donné une suite de terme général u, étudier la série de terme général u c'est étudier la suite obtenue en prenant la somme des premiers termes de la suite (u), autrement dit la suite de terme général S défini par : L'étude d'une série peut passer par la recherche d'une écriture simplifiée des sommes finies en jeu et par la recherche éventuelle d'une limite finie quand n tend vers l'infini.
AdditionL'addition est une opération élémentaire, permettant notamment de décrire la réunion de quantités ou l'adjonction de grandeurs extensives de même nature, comme les longueurs, les aires, ou les volumes. En particulier en physique, l'addition de deux grandeurs ne peut s'effectuer numériquement que si ces grandeurs sont exprimées avec la même unité de mesure. Le résultat d'une addition est appelé une somme, et les nombres que l'on additionne, les termes.